III. On the Ultra-Violet Spectra of the Elements.—Part I. Iron (with a map).

By G. D. LIVEING, M.A., F.R.S., Professor of Chemistry, and J. Dewar, M.A., F.R.S., Jacksonian Professor, University of Cambridge.

Received June 8,—Read June 15, 1882.

PLATES 1-5.

Ängström's "normal solar spectrum" has served most spectroscopists as a standard of reference for wave-lengths in the visible part of the spectrum. Cornu's continuation of it, and particularly the map of the iron lines which he used in the construction of it, serves very well for such a standard up to the limit of the solar spectrum, i.e., to a wave-length 2948 (U). For the region above this we have had to use Mascart's and Cornu's wave-lengths of the cadmium lines, and Cornu's wavelengths of some magnesium lines. The intervals between those lines are, however, too great for any close approximation to the wave-lengths of intervening lines by interpolation, and, moreover, the wave-lengths did not appear to be determined with sufficient precision to serve as a standard, and the lines are ill adapted to that purpose by reason of their diffuse character. For the determination of the wave-lengths of lines in this higher region we have, therefore, been driven to form a standard for ourselves. For this purpose we have chosen the iron spectrum which had been employed by CORNU in the region which he mapped, and seemed to answer the purpose well, both from the number of lines which it presents and their characteristic grouping by which they may easily be recognised by anyone who has once become familiar with them. The wave-lengths of the most prominent lines were determined by means of a RUTHERFURD diffraction grating, as detailed below, between the wave-lengths 2948 and 2327; but beyond this there is a remarkable falling off in the intensity of the iron lines, and between wave-lengths 2327 and 2135 (which is near the limit of transparency of Iceland spar) we have preferred to determine the wave-lengths of the prominent copper lines which are numerous and strong in that region. lengths of a series of lines at short intervals having thus been determined, those of the intervening lines were obtained by interpolation, and the result is shown in the map of the iron spectrum above U which accompanies this paper.

The instruments.

The goniometer used was constructed for us by Hilger, and has a circle of 18 inches diameter, graduated at intervals of 5' by Simms. Fractions of 5' are read by a microscope with a micrometer eye-piece fixed to the arm which carries the telescope.

The telescope and collimator have each an object-glass consisting of a single lens of quartz $1\frac{1}{2}$ inch diameter and a focal length of $18\frac{1}{2}$ inches for the sodium yellow light, but not more than 16 inches for the highest rays measured. The sliding tubes of both telescope and collimator are graduated in fiftieths of an inch, and alterations of focus were made on both instruments at the same time, so that the rays falling on the grating might always be nearly parallel. The graduation of the sliding tube was also used for ascertaining the distance of the photographic plate from the object-glass of the telescope. This was necessary for computing the corrections of the angular measure, as explained below. The collimator is furnished with a quartz lens, of 3 inches focal length, in front of the slit, movable to a greater or less distance, but retained by guides so that its axis may remain coincident with that of the collimator. This lens was placed about 6 inches in front of the slit, and the source of light at the same distance beyond it, so that its image was focussed on the slit.

The measurements were all made by means of photographs taken on Wratten and Wainwright's instantaneous dry gelatine plates. The plates ($2\frac{1}{4}$ inches by 1 inch) were held in a small slide attached to a tube which fitted the telescope in place of the eye-piece, and thus the plate could easily be turned about an axis perpendicular to its plane and coinciding with the axis of the telescope. This turning of the plate about is a matter of no small importance, as it enabled us to avoid the errors which would have arisen from measuring the distances of the lines from the irregular edge of the plate, as will be seen when the mode of measuring the photographs is described. The plates were retained in one position in the slide during exposure by three springs, of which two pressed against two edges of the plate and the other against its back.

The grating was ruled on speculum metal by Chapman with Rutherfurd's machine, and has a ruled surface of rather more than 13/4 inch in each dimension, with 17,296 lines to the inch. It is an excellent grating, but, of course, has the faults which belong to the particular machine by which it was ruled. The definition, when it has not been exposed to variations of temperature, is very good, but it has one inconvenience for our present purpose, which is, that the focus for the same ray in the spectrum of the same order does not fall at quite the same distance from the object-glass of the telescope on the two sides of the normal. The explanation of this has been given by Cornu (Comptes Rendus, lxxx., 645), who has shown that it is due to a systematic variation in the distance between the ruled lines. As the method employed by us depends upon taking angular measures of the position of the ray on both sides of the normal, and any shift of the focussing tube between the two

positions would be likely to introduce serious errors, we have been obliged to be content with the photograph taken on one side being a little, though only a little, less sharp in definition than that taken on the other side. The grating was used with its plane perpendicular to the axis of the collimator, and it was brought into that position in the following way. The telescope and collimator having their axes directed as nearly as possible on to the centre of the circle, the telescope was placed opposite the collimator and the cross wires brought on to the image of the slit, and the reading of the circle taken. The grating was then placed in position and adjusted for level until the spectra occupied the middle of the field of view in all positions of the telescope. It was then adjusted in azimuth until the images of the D lines, from the light of a sodium flame in front of the slit, in the spectra of the second order, on the two sides of the normal were at equal angular distances from the axis of the collimator, as determined by the reading taken when the telescope was opposite the collimator. The grating was then clamped in that position. adjustment had to be made by hand and was liable to disturbance in the clamping, so that it was afterwards found that the plane of the grating was not quite perpendicular to the axis of the collimator; but as the errors arising from this in the measures on the two sides nearly compensate one another, the final error in the wavelength from this cause is very small indeed.

For measuring the photographs a micrometer was constructed for us by HILGER. This is attached to the stage of a microscope and carries a small frame in which the photographic plate is held by springs. The micrometer-screw has 100 turns to the inch, and by the drum-head $\frac{1}{100}$ th of a turn or $\frac{1}{10000}$ th of an inch can be read. A 1 inch object-glass to the microscope was used, and measures were made by moving the plate until the lines of the photograph were successively bisected by a spider line in the eye-piece. The reading of the micrometer gave the distances between the lines.

The source of light employed was, in the first instance, the arc from a DE MERITENS magneto-electric machine, in a crucible of magnesia into which iron wire was introduced. But from the overlapping of the spectra of different orders, and the large amount of light emitted by the arc, we found that the plates were so clouded in many places that the lines could not be well seen, and we abandoned the arc for the spark between iron electrodes. This was produced by a large induction coil, worked by 5 Grove's cells, and having a large Leyden jar connected with the secondary wire. No inconvenience arose from the overlapping of the different orders when the spark was used, because the parts of the spectra of higher and lower orders which overlapped the part of the spectrum of the fourth order to be measured were always considerably out of focus, the object glasses of telescope and collimator being uncorrected, and so the light of the lines in the overlapping spectra was diffused and produced only a faint clouding of the plate, which in no way interfered with the measure of the lines of the fourth order.

Mode of proceeding.

The first thing to be done was to obtain a focusing scale for the different angles, including the portion of the spectrum to be mapped. This was already known approximately from Sarasin's table of refractive indices of quartz, and was corrected by a series of trial plates taken at successive angles.

The electrodes, between which the spark was passed, were arranged so that the spark should pass horizontally (the slit being vertical), and at such a height that the visible image formed by the lens in front of the slit on the plates of the slit might fall just above, or partly above, the centre of the slit. The lower half of the slit was closed by a shutter, so that only the lower half of the field of view of the telescope was illuminated. The distance of the spark from the lens had next to be adjusted, as the focal length of the lens for the visible rays is very different from that for the ultraviolet which were to be photographed. This was done by estimation, as there was no need to have the image exactly focussed on the slit, so long as the slit was in the middle of the image and light enough passed through.

The telescope was then set to such an angle as would bring the line so measured nearly into the centre of the field, the focus adjusted, the photographic slide adjusted and levelled, and the plate exposed. An image of the lines was thus formed on the lower half of the plate. The slide was then turned round through 180° about the axis of the tube, so as to bring what had before been the upper side of the plate to the lower side and right to left, and again levelled. The plate was then again exposed and thus a second image of the line impressed, and one of the two images was as far to the right of the axis about which the plate had been turned as the other was to the left. the distance between the two images would therefore be the distance of the line from the centre of the field, and the knowledge of this would give the means of calculating the deviation of the rays producing the line from the axis of the telescope. telescope was next turned to the corresponding angle on the other side of the collimator and the operations repeated with a second plate, but without any alterations of adjustment. The telescope was then moved through a small angle, generally 5' or 10', and the same operations as before repeated on both sides of the collimator, the second pair of plates being intended to serve as a check upon the first.

Similar operations were then repeated at such angular intervals as should bring in the most characteristic strong lines of iron all along the scale. Beyond the wavelength 2327, it was found that the iron lines were too faint to produce any sufficient impression on the plates. For the region beyond this up to wave-length 2135, copper electrodes were substituted for iron. This being about the limit of transparency of calcite (the material of our prisms), was the limit of our study of spectra at this time.

The measurement of the distance between the two images of a line was made by the micrometer above described, and to convert this distance into arc, it was necessary to

know the distance of the plate from the centre of the object-glass of the telescope. It was found by measurement that the distance from the object-glass to the front of the photographic plate, when the sliding tube was at the 100th division, was 439 millims, and the thickness of the lens at its middle 2.5 millims, which, divided by the refractive index of quartz for the high rays observed is very nearly 1.5 millim, making the distance of the photographic plate from the optical centre of the object-glass very nearly 440.5 millims. From this the formula $\tan^{-1} \frac{D}{3068.5 + 4a}$ was deduced for the angular distance of a line from the axis of the telescope when the difference of the micrometer readings of the two images of the line is D, and the number of divisions of the scale of sliding tube at which the telescope was focussed was a. To determine whether the angle so found was to be added or subtracted from the reading of the circle, all that was necessary was to observe whether the micrometer reading of the upper or lower image as seen in the microscope were the greater. The angular position of the line having thus been found on each side of the collimator, the wavelength was deduced by the ordinary formula.

The following tables give the measurements made, the calculated angles, and the wave-lengths deduced.

The quantities recorded in the several columns is as follows:—

- I. The mark of the particular photographic plate.
- II. The reading of the circle, giving the position of the telescope.
- III. The reading of the scale of focussing tube.
- IV. The measured distance of the two images of the line in hundredths of an inch.
- V. One half this distance reduced to angular measure with the sign + or according as it is to be added or subtracted from the reading of the circle to give the angular position of the line.
 - VI. The angular position of the line.
- VII. The mean values of the angular positions so found. When several sets of plates have been taken at different times, or with varied adjustments, the means for the several sets are given separately.
 - VIII. The deviation from the normal to the grating of the line as deduced.
- IX. The wave-length deduced or adopted. When different sets of plates give different values, these different values are inserted in brackets.

The figures belonging to different lines are separated by horizontal spaces.

In the case of plates marked with a figure less than 172 the arc was employed to give the light, in the case of all plates with the mark 172 and upwards the spark was employed.

I.	II.	III. IV.	. v.	VI.	VII.	VIII.	IX.
341 342 343	28 30 "0 309 30 0 309 25 0	hundre of an i 49 10.6 49 8.4 49 13.3	nch. $-11 \ 12 \ 3 + 8 \ 53$	28 18 48 309 38 53 309 39 6	309 39 0	。	wave- length. 2326.9
341 342 343	28 30 0 309 30 0 309 25 0	49 6·1 49 3·9 49 8·7	6 + 410	28 23 34 309 34 10 309 34 11		39 24 42	2330.9
341 342 343	28 30 0 309 30 0 309 25 0	49 49 49 20 69	1 + 2 7	28 25 25 309 32 7 309 32 17	309 32 12	39 2 6 36	2332.5
341 342 343	28 30 0 309 30 0 309 25 0	49 49 3.9 49 0.8	6 - 4 10	28 31 44 309 25 50 309 25 55	309 25 52	39 32 56	2337.7
341 342 343	28 30 0 309 30 0 309 25 0	49 49 10·3 49 5·5	7 -10 55	28 38 20 309 19 5 309 19 8	309 19 6	39 39 37	2343.2
341 342 343	28 30 0 309 30 0 309 25 0	49 8.7 49 11.2 49 6.3	7 -1152	28 39 15 309 18 8 309 18 18	309 18 13	39 40 31	2343•9
341 342 343	28 30 0 309 30 0 309 25 0	49 13·4 49 15·8 49 11·0	9 - 1644	28 44 7 309 13 16 309 13 21	309 13 14	39 45 27	2348.0
262 263 264 265	28 45 0 28 40 0 309 15 0 309 10 0	50 11.6 50 16.3 50 13.9 50 9.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28 57 16 28 57 14 309 0 18 309 0 21	28 57 15 309 0 19	39 58 28	2358.7
262 263 264 265	28 45 0 28 40 0 309 15 0 209 10 0	50 12.9 50 17.6 50 15.1 50 10.4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28 58 35 28 58 33 308 59 4 308 59 1	28 58 34 308 59 2	39 59 46	2359.7
262 263 264 265	28 45 0 28 40 0 309 15 0 309 10 0	50 18.3 50 23.0 50 20.6 50 15.9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 4 17 29 4 13 308 53 15 308 53 12	29 4 15 308 53 13	40 5 31	2364.4
81 82 86 84 85	29 30 3 29 30 3 29 34 3 308 59 40 308 59 40	25 1.7 25 2.6 25 2.5 25 1.6 25 1.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 31 54 29 32 15 29 31 28 308 58 1 308 58 22	29 31 52 308 58 12	40 16 50	(2373.7)
100 101 102 103	308 53 50 308 53 50 29 40 0 29 30 0	25 2·4 25 2·6 25 14·6 25 5·4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	308 51 9 308 50 57 29 24 7 29 24 8	308 51 3 29 24 7	40 16 32	2373.4
262 263 264 265	28 45 0 28 40 0 309 15 0 309 10 0	50 28.6 50 33.5 50 31.0 50 26.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 15 8 29 15 3 308 42 18 308 42 17	29 15 6 308 42 17	40 16 25	(2373.3)

I.	11.	III. IV.	v.	VI.	VII.	VIII.	IX.
262 263 264 265	28 45 0 28 40 0 309 15 0 309 10 0	hundredth of an inch 50 38·19 50 42·96 50 40·87 50 36·11		29 25 10 29 25 11 308 32 1 308 32 1	° ′ ″ 29 25 11	。	wave- length. (2381.6)
81 82 86 84 85	29 30 3 29 30 3 29 34 3 308 59 40 308 59 40	25 11·29 25 11·62 25 7·13 25 11·02 25 10·82	+12 14 +12 36 + 7 44 -11 57 -11 44	29 42 17 29 42 39 29 41 47 308 47 43 308 47 56	29 42 14 308 47 48	40 27 13	(2382·1)
100 101 102 103	308 53 50 308 53 50 29 40 0 29 30 0	25 12·00 25 12·26 25 5·27 25 4·10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	308 40 49 308 40 32 29 34 17 29 34 27	308 40 40 29 34 22	40 26 51	2381·7 (2381·8)
258 259 260 261	308 15 0 308 20 0 29 45 0 29 40 0	53 16·34 53 11·86 53 18·78 53 13·70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	308 32 7 308 32 26 29 25 19 29 25 39	308 32 17 29 25 29	40 26 36	(2381.6)
81 82 86 84 85	29 30 3 29 30 3 29 34 3 308 59 40 308 59 40	25 18.96 25 19.14 25 14.66 25 18.66 25 18.45	$\begin{array}{c} +20 & 34 \\ +20 & 55 \\ +15 & 54 \\ -20 & 15 \\ -20 & 1 \end{array}$	29 50 37 29 50 58 29 49 57 308 39 25 308 39 39	29 50 31 308 39 32	40 35 29	(2388.8)
258 259 260 261	308 15 0 308 20 0 29 45 0 29 40 0	53 8.56 53 4.01 53 11.02 53 5.89	$\begin{array}{c} + & 8 & 58 \\ + & 4 & 12 \\ - & 11 & 33 \\ - & 6 & 10 \end{array}$	308 23 58 308 24 12 29 33 27 29 33 50	308 24 5 29 33 38	40 34 46	(2388.2)
100 101 102 103	308 53 50 308 53 50 29 40 0 29 30 0	25 19.61 25 19.77 25 2.31 25 11.64	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	308 32 33 308 32 23 29 42 30 29 42 38	308 32 28 29 42 34	40 35 3	2388.5
100 101 102 103	308 53 50 308 53 50 29 40 0 29 30 0	25 27.60 25 27.79 25 10.33 25 19.64	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	308 23 53 308 23 4 29 51 12 29 51 18	308 23 47 29 51 15	40 43 44	(2395.5)
258 259 260 261	308 15 0 308 20 0 29 45 0 29 40 0	53 0·22 53 4·41 53 2·85 53 2·20	+ 0 14 - 4 37 - 3 3 + 2 18	308 15 14 308 15 23 29 41 57 29 42 18	308 15 18 29 42 7	40 43 24	2395·4 (2395·2)
100 101 102 103	308 53 50 308 53 50 29 40 0 29 30 0	25 31·80 25 32·03 25 14·46 25 23·85	$ \begin{array}{r} -34 & 30 \\ -34 & 45 \\ +15 & 41 \\ +25 & 58 \end{array} $	308 19 20 308 19 5 29 55 41 29 55 53	308 19 12 29 55 47	40 48 18	(2399·2
258 259 260 2 61	308 15 0 308 20 0 29 45 0 29 40 0	53 4·16 53 8·65 53 1·45 53 6·53	- 4 22 - 9 4 + 1 31 + 6 51	308 10 38 308 10 56 29 46 31 29 46 51	308 10 47 29 46 41	40 47 57	2399 (2398·9
258 259 260 261	308 15 0 308 20 0 29 45 0 29 40 0	53 10.89 53 15.48 53 8.08 53 13.13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	308 3 35 308 3 47 29 53 28 29 53 46	308 3 41 29 53 37	40 54 58	2404.5

I.	11. ,	III. IV.	v.	VI.	VII.	VIII.	IX.
258 259 260 261	308 15 0 308 20 0 29 45 0 29 40 0	hundredt of an ine 53 12:97 53 17:53 53 10:18 53 15:18		308 1 24 308 1 38 29 55 40 29 55 54	308 1 31 29 55 47	40 57 8	wave- length.
258 259 260 261	308 15 0 308 20 0 29 45 0 29 40 0	53 17·57 53 22·12 53 14·65 53 19·69	$ \begin{array}{c cccc} -18 & 25 \\ -23 & 11 \\ +15 & 21 \\ +20 & 38 \end{array} $	307 56 35 307 56 49 30 0 21 30 0 38	307 56 42 30 0 30	41 1 54	2410.2
258 259 260 261	308 15 0 308 20 0 29 45 0 29 40 0	53 18·20 53 22·79 53 15·41 53 20·35	$ \begin{array}{rrrr} -19 & 4 \\ -23 & 53 \\ +16 & 9 \\ +21 & 20 \end{array} $	307 55 56 307 56 7 30 1 9 30 1 20	307 56 1 30 1 15	41 2 37	2410.7
258 259 260 261	308 15 0 308 20 0 29 45 0 29 40 0	53 20·93 53 25·55 53 17·99 53 23·01	$\begin{array}{c} -21 & 56 \\ -26 & 46 \\ +18 & 51 \\ +24 & 7 \end{array}$	307 53 4 307 53 14 30 3 51 30 4 7	307 53 9 30 3 59	41 5 25	2413.0
254 255 256 257	30 45 0 30 40 0 307 15 0 307 20 0	57 7.82 57 3.05 57 5.71 57 1.06	- 8 9 - 3 11 + 5 57 + 1 6	30 36 51 30 36 49 307 20 57 307 21 6	30 36 50 307 21 2	41 37 54	2439.0
254 255 256 257	30 45 0 30 40 0 307 15 0 307 20 0	57 1.60 57 3.17 57 0.67 57 5.37	- 1 40 + 3 18 - 0 42 - 5 36	30 43 20 30 43 18 307 14 18 307 14 24	30 43 19 307 14 21	41 44 29	2444.3
254 255 256 257	30 45 0 30 40 0 307 15 0 307 20 0	57 0·27 57 4·45 57 1·98 57 6·70	- 0 17 + 4 38 - 2 4 - 6 59	30 44 43 30 44 38 307 12 56 307 13 1	30 44 41 307 12 58	41 45 52	2445.4
250 251	32 0 0 306 5 0	65 47·16 40·20	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 11 18 306 46 31		42 12 23	2466.4
250 251	32 0 0 306 5 0	65 42·39 65 35·41	-43 47 +36 34	31 16 13 306 41 34		42 17 19	2470.3
250 253 251 252	32 0 0 31 45 0 306 5 0 306 15 0	65 30·79 65 16·06 65 23·53 65 13·80	-31 48 -16 35 +24 18 +14 15	31 28 12 31 28 25 306 29 18 306 29 15	31 28 18 306 29 17	42 29 31	2480 0
250 253 251 252	32 0 0 31 45 0 306 5 0 306 15 0	65 28·43 65 13·78 65 21·27 65 11·42	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 30 38 31 30 46 306 26 58 306 26 48	31 30 42 306 26 53	42 31 54	2481.8
250 251	32 0 0 306 5 0	65 27.73 65 20.52	$ \begin{array}{r} -28 & 38 \\ +21 & 12 \end{array} $	31 31 22 306 26 12		42 32 35	2482.4
71 72 73	31 54 45 306 38 55 306 38 55	50 8.07 50 5.78 50 5.79	- 3 14 + 6 5 + 6 5	31 51 31 306 45 0 306 45 0	306 4 5 0	42 33 15	2482.9

I.	11.	111.	IV.	V.	VI.	VII.	VIII.	IX.
71 72 73	\$1 54 45 306 38 55 306 38 55		andredths an inch. 2·04 4·77 4·85	- 2 9 + 5 1 + 5 6	31 52 36 306 43 56 306 44 1	306 43 59	° ′ ″ 42 34 18	wave- length. 2483.7
250 253 251 252	32 0 0 31 45 0 306 5 0 306 15 0	65	23·27 8·35 16·24 6·02	$ \begin{array}{rrrrr} -24 & 2 \\ -8 & 37 \\ +16 & 46 \\ +6 & 13 \end{array} $	31 35 58 31 36 23 306 21 46 306 21 13	31 36 10 306 21 30	42 37 20	2486.1
107 108 109 110 111 112 113	306 10 10 306 0 0 306 10 10 306 20 0 32 0 5 32 0 5 31 50 10	50 50 50 50	17·40 27·46 17·71 8·64 11·83 12·02 2·39	+18 18 +28 53 +18 36 + 9 6 -12 27 -12 39 - 2 31	306 28 28 306 28 53 306 28 46 306 29 6 31 47 33 31 47 26 31 47 39	306 28 48 31 47 33	42 39 23	2487:7
71 72 73	31 54 45 306 38 55 306 38 55	50 50 50	4·74 2·06 2·08	+ 4 59 - 2 10 - 2 11	31 59 44 306 36 45 306 36 44	306 36 44	42 41 30	(2489.4)
172 173 174 175 176 177	31 50 5 31 40 20 32 0 5 306 23 0 306 33 5 306 13 0	50 50 50 50 50 50	2·00 7·41 11·67 1·04 8·37 10·74	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 47 59 31 48 8 31 47 49 306 24 6 306 24 17 306 24 18	31 47 59 306 24 14	42 41 53	2489·5 (2489·7)
250 253 251 252	32 0 0 31 45 0 306 5 0 306 15 0	65	19·12 4·34 11·64 1·79	-19 45 $- 4 29$ $+ 12 1$ $+ 1 54$	31 40 15 31 40 31 306 17 1 306 16 54	31 40 23 306 16 57	42 41 43	2489.5
250 253 251 252	32 0 0 31 45 0 306 5 0 306 15 0	65 65 65 65	17·91 3·12 10·51 0·73	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31 41 30 31 41 47 306 15 51 306 15 45	31 41 38 306 15 48	42 42 55	2490.5
250 253 251 252	32 0 0 31 45 0 306 5 0 306 15 0	65 65 65 65	14.87 0.09 7.42 2.41	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 44 39 31 44 54 306 12 40 306 12 29	31 44 46 306 12 35	42 46 5	2493.0
172 173 174 175 176 177	31 50 5 31 40 20 32 0 5 306 23 0 306 33 5 306 13 0	50 50 50 50 50 50	2·19 11·59 7·55 3·19 12·59 6·53	+ 2 18 +12 11 - 7 56 - 3 22 -13 15 + 6 52	31 52 23 31 52 31 31 52 9 306 19 38 306 19 50 306 19 52	31 52 21 306 19 47	42 46 17	2493·0 (2493·1)
246* 247 248 249	305 20 0 305 25 0 32 45 0 32 40 0	65 65 65 65	51·22 46·37 58·23 53·28	$\begin{array}{c} +52 & 54 \\ +47 & 53 \\ -60 & 8 \\ -55 & 1 \end{array}$	306 12 54 306 12 53 31 44 52 31 44 59	306 12 54 31 44 55	42 46 0	(2492.9)

I.	II.	III.	IV.	v.	VI.	VII.	VIII.	IX.
246* 247 248 249	305 20 0 305 25 0 32 45 0 32 40 0	65 65 65 65	hundredths of an inch. 44·18 39·34 51·14 46·31	$\begin{array}{c} +45 & 38 \\ +40 & 38 \\ +40 & 38 \\ -52 & 49 \\ -47 & 50 \end{array}$	306 5 38 306 5 38 31 52 11 31 52 11	o , ,	42 53 16	wave- length.
172 173 174 175 176 177	31 50 5 31 40 20 32 0 5 306 23 0 306 33 5 306 13 0	50 50 50 50 50 50	8.97 18.45 0.64 10.13 19.56 0.42	$\begin{array}{ccccc} + & 9 & 26 \\ + & 19 & 24 \\ - & 0 & 40 \\ - & 10 & 39 \\ - & 20 & 34 \\ - & 0 & 27 \end{array}$	31 59 31 31 59 44 31 59 25 306 12 21 306 12 31 306 12 33	31 59 33 306 12 30	42 53 32	2498·7 (2498·8)
91 92 93	306 39 0 31 55 0 31 55 0	50 50 50	26·86 24·04 23·92	-28 15 + 25 17 + 25 10	306 10 45 32 20 17 32 20 10	32 20 14	43 4 45	2507.6
181 182 183 184 185	305 22 0 32 56 10 32 55 5 32 51 15 32 35 2 32 25 15	55 55 55 55 55 55	33.07 38.61 37.47 33.88 18.40 9.02	+34 34 $-40 22$ $-39 10$ $-35 25$ $-19 14$ $-9 26$	305 56 34 32 15 48 32 15 55 32 15 50 32 15 48 32 15 49	305 56 34 32 15 50	43 9 38	2511.4
246* 247 248 249	305 20 0 305 25 0 32 45 0 32 40 0	65 65 65 65	28·14 23·20 35·35 30·54	$\begin{array}{cccc} +29 & 4 \\ +23 & 54 \\ -36 & 31 \\ -31 & 33 \end{array}$	305 49 4 305 48 54 32 8 29 32 8 27	305 48 59 32 8 28	43 9 44	2511.4
246* 247 248 249	305 20 0 305 25 0 32 45 0 32 40 0	65 65 65 65	10·95 5·97 18·43 13·56	+11 19 +6 10 -19 2 -14 0	305 31 19 305 31 10 32 25 58 32 26 0	305 31 15 32 25 59	43 27 22	(2525.2
181 182 183 184 185 186	305 22 0 32 56 10 32 55 5 32 51 15 32 35 2 32 25 15	55 55 55 55 55 55	16·10 22·02 20·82 17·24 1·72 7·69	$\begin{array}{c} +16 & 50 \\ -23 & 1 \\ -21 & 46 \\ -18 & 1 \\ -1 & 48 \\ +8 & 2 \end{array}$	305 38 50 32 33 9 32 33 19 32 33 14 32 33 14 32 33 17	305 38 50 32 33 15	43 27 13	2525:1
246* 247 248 249	305 20 0 305 25 0 32 45 0 32 40 0	65 65 65 65	9·81 4·84 17·35 12·48	+10 8 $+5$ 0 -17 55 -12 53	305 30 8 305 30 0 32 27 5 32 27 7	305 30 4 32 27 6	43 28 31	2526 1
246* 247 248 249	305 20 0 305 25 0 32 45 0 32 40 0	65 65 65 65	5·72 0·78 13·25 8·32	+554 $+048$ -1341 -836	305 25 54 305 25 48 32 31 19 32 31 24	305 25 51 32 31 22	43 32 45	(2529-8
178 179 180 181 182 183 184 185	305 53 10 305 47 55 305 18 0 305 22 0 32 56 10 32 55 5 32 51 15 32 35 2 32 25 15	55 55 55 55 55 55 55 55	19:06 13:90 14:84 10:92 16:92 15:70 12:23 3:42 12:87	$\begin{array}{c} -19 & 55 \\ -14 & 32 \\ +15 & 31 \\ +11 & 25 \\ -17 & 42 \\ -16 & 25 \\ -12 & 47 \\ +3 & 35 \\ +13 & 27 \end{array}$	305 33 15 305 33 23 305 33 31 305 33 25 32 38 28 32 38 40 32 38 28 32 38 37 32 38 42	305 33 23 32 38 35	43 32 36	2529.2

I.	II.	III.	IV.	v.	VI.	VII.	VIII.	IX.
246* 247 248 249	305 20 0 305 25 0 32 45 0 32 40 0	65 65 65 65	hundredths of an inch. 0·55 4·39 8·22 3·27	+ 0 34 - 4 32 - 8 29 - 3 23	305 20 34 305 20 28 32 36 31 32 36 37	0 / // 305 20 31 32 36 34	43 38 2	wave- length.
246* 247 248 249	305 20 0 305 25 0 32 45 0 32 40 0	65 65 65 65	0·35 5·31 7·20 2·32	- 0 22 - 5 29 - 7 26 - 2 24	305 19 38 305 19 29 32 37 34 32 37 36	305 19 34 32 37 35	43 39 0	2534.2
246* 247 248 249	305 20 0 305 25 0 32 45 0 32 40 0	65 65 65 65	3·41 8·27 4·24 0·65	- 3 31 - 8 33 - 4 23 + 0 40	305 16 29 305 16 27 32 40 37 32 40 40	305 16 28 32 40 38	43 42 5	2536.6
178 179 180 181 182 183 184 185	305 53 10 305 47 55 305 18 0 305 22 0 32 56 10 32 55 5 32 51 15 32 35 2	55 55 55 55 55 55 55 55	28·22 23·04 5·71 1·74 7·90 6·67 3·20 12·36	-29 30 -24 5 + 5 58 + 1 52 - 8 15 - 6 58 - 3 21 + 12 55	305 23 40 305 23 50 305 23 58 305 23 52 32 47 55 32 48 7 32 47 54 32 47 57	305 23 50		~
186 178 179 180 181 182 183 184	32 25 15 305 53 10 305 47 55 305 18 0 305 22 0 32 56 10 32 55 15 32 51 15 32 35 2	55 55 55 55 55 55 55 55	30.92 25.71 3.11 0.91 5.40 4.13 0.76 14.95	+ 22 47 - 32 19 - 26 53 + 3 15 - 0 57 - 5 39 - 4 19 - 0 48 + 15 38	32 48 2 305 20 51 305 21 2 305 21 15 305 21 3 32 50 31 32 50 46 32 50 27 32 50 40	32 47 59 305 21 3	43 42 5	2536•0
186 187 188 189 190	32 25 15 33 10 10 33 20 15 305 3 0 304 52 40	62 62 62 62 62	18.64 28.24 17.86 27.59	-19 19 -29 16 +18 31 +28 36	32 50 39 32 50 51 32 50 59 305 21 31 305 21 16	32 50 37 32 50 55 305 21 23	43 44 47	2538·6 2538·6
243 244 248 249 245 246 246* 247	33 25 0 33 15 0 32 45 0 32 40 0 304 50 0 304 45 0 305 20 0 305 25 0	65 65 65 65 65 65 65	40·47 30·78 1·61 3·27 23·15 27·85 6·01 11·01	$\begin{array}{c} -41 & 48 \\ -31 & 47 \\ -1 & 40 \\ +3 & 23 \\ +28 & 45 \\ -6 & 12 \\ -11 & 22 \end{array}$	32 43 12 32 43 13 32 43 20 32 43 23 305 13 55 305 13 46 305 13 48 305 13 38	32 43 17 305 13 47	43 44 45	2538.6
242 243 244 245 246	33 30 0 33 25 0 33 15 0 304 50 0 304 45 0	65 65 65 65	32·13 27·25 17·63 9·83 14·56	$\begin{array}{c} -33 & 11 \\ -28 & 9 \\ -18 & 13 \\ +10 & 9 \\ +15 & 2 \end{array}$	32 56 49 32 56 51 32 56 47 305 0 9 305 0 2	32 56 49 305 0 6	43 58 21	2549·1
242 243 244 245 246	33 30 0 33 25 0 33 15 0 304 50 0 304 45 0	65 65 65 65	31·41 26·58 16·87 8·99 13·77	$\begin{array}{ccccc} -32 & 26 \\ -27 & 27 \\ -17 & 26 \\ + & 9 & 17 \\ +14 & 13 \end{array}$	32 57 34 32 57 33 32 57 34 304 59 17 304 59 13	32 57 34 304 59 15	43 59 10	2549•7

I.	II.	III.	IV.	y.	VI.	VII.	VIII.	IX.
242 243 244 245 246	33 30 0 33 25 0 33 15 0 304 50 0 304 45 0	65 65 65 65 65	hundredths of an inch. 30·64 25·75 16·12 8·19 12·89	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	32 58 21 32 58 24 32 58 21 304 58 28 304 58 19	32 58 22 304 58 23	43 59 59	wave- length. 2550·3
242 243 244 245 246	83 30 0 83 25 0 33 15 0 304 50 0 304 45 0	65 65 65 65 65	15.64 10.74 1.13 6.97 2.27	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33 13 51 33 13 54 33 13 50 304 42 48 304 42 39	33 13 52 304 42 43	44 15 34	2 56 2·3
188 189 190	33 20 15 305 3 0 304 52 40	62 62 62	1·31 11·86 2·25	$\begin{array}{cccc} + & 1 & 21 \\ -12 & 18 \\ - & 2 & 20 \end{array}$	33 21 36 304 50 42 304 50 20	33 21 36 304 50 31	44 15 33	2562·3
242 243 244 245 246	33 30 0 33 25 0 33 15 0 304 50 0 304 45 0	65 65 65 65 65	14·50 9·57 0·10 7·96 3·45	-14 59 - 9 53 + 0 6 - 8 13 - 3 34	33 15 1 33 15 7 33 15 6 304 41 47 304 41 26	38 15 5 304 41 36	44 16 44	2563·2
193 194	303 19 55 34 53 15	57 57	57·80 58·93	+60 16 -61 27	304 20 11 33 51 48		44 45 48	(2585·3)
195 196	34 43 5 303 30 0	54 54	49·10 47·72	-51 23 +49 57	33 51 42 304 9 57		44 45 52	2585.4
242 243 244 245 246	33 20 0 33 25 0 33 15 0 304 50 0 304 45 0	65 65 65 65 65	13.75 18.57 28.30 36.59 32.00	+14 12 +19 11 +29 14 -37 47 -33 3	33 44 12 33 44 11 33 44 14 394 12 13 304 11 57	33 44 12 304 12 5	44 46 4	(2585.5)
95 97 98 99	303 19 57 303 19 57 34 50 0 34 50 0	65 65 65 65	45·14 44·91 38·13 37·99	+46 37 $+46 26 $ $-39 23 $ $-39 14$	304 6 34 304 6 23 34 10 37 34 10 46	304 6 29 34 10 41	45 2 6	2597.6
96 97 98 99	303 19 57 303 19 57 34 50 0 34 50 0	65 65 65 65	43.80 43.63 36.71 36.49	+45 14 $+45$ 4 -37 55 -37 41	304 5 11 304 5 1 34 12 5 34 12 19	304 5 6	45 3 33	(2598.7)
195 196	34 43 5 303 30 0	54 54	32·03 30·34	$-33 \ 32 + 31 \ 45$	34 9 33 304 1 45		45 3 54	(2599.0)
193 194	303 19 <i>55</i> 34 53 15	57 57	40·38 41·75	$^{+42}_{-43}$ $^{2}_{32}$	304 1 58 34 9 43		45 3 52	2598·8 (2599·0)
195 196	34 43 5 303 30 0	54 54	22·35 20·59	$-23 \ 24 + 21 \ 33$	34 19 41 303 51 33		45 14 4	(2606.6)
193 194	303 19 55 34 53 15	57 57	30·45 31·77	$^{+31\ 45}_{-33\ 8}$	303 51 40 34 20 7		45 14 13	2606·7 (2606·8)
193 194	303 19 55 34 53 15	57 57	24·28 25·84	$^{+25}_{-26}$ 19 $^{-26}$ 57	303 45 14 34 26 18		45 20 32	(2611.5)

Ι.	II.	111.	IV.	v.	VI.	VII.	VIII.	IX.
195 196	34 43 % 303 30 (hundredths of an inch. 16.24 14.57	-17 0 + 15 15	34 26 5 303 45 15	0 / 11	。 / // 45 20 25	wave- length.
96 97 98 99	303 19 57 303 19 57 34 50 6 34 50 6	7 65 0 65	27.72 27.54 20.89 20.75	+28 38 $+28 27$ $-21 34$ $-21 26$	303 48 35 303 48 24 34 28 26 54 28 34	303 48 30 34 23 30	45 2 0 0	(2611-1
96 97 98 99	303 19 57 303 19 57 34 50 0 34 50 0	7 65 0 65	25·14 24·93 18·34 18·33	+2558 $+2545$ -1857 -1856	303 45 55 363 45 42 34 31 3 34 31 4	303 45 49 34 31 3	45 22 37	2613.1
96 97 98 99	303 19 57 303 19 57 34 50 (7 65 0 6 5	20·18 20·05 13·41 13·28	+20 50 $+20 42$ $-13 51$ $-13 43$	303 40 47 303 40 39 34 36 9 34 36 17	303 40 43 34 36 13	45 27 45	(2616-9
195 196	34 43 303 30		8·94 7·18	- 9 21 + 7 31	34 33 44 303 37 31		45 28 6	2617.2
193 194	303 19 5 34 53 1		16·92 18·54	+17 39 -19 20	303 37 33 34 33 55		45 28 11	2617-2
193 194	303 19 5 34 53 1	5 57 5 57	6·58 8·29	+ 6 52 - 8 39	303 26 47 34 44 36		45 38 55	(2625-8
195 196	34 43 303 30		1·18 3·14	$^+$ 1 14 $^-$ 3 17	34 44 19 303 26 43		45 38 48	2625.2
96 97 98 99	303 19 5 303 19 5 34 50 34 50	7 65 0 65	9·76 9·45 2·96 2·84	+10 5 $+ 9 46 $ $- 3 4 $ $- 2 55$	303 30 2 303 29 43 34 46 56 34 47 5	303 29 53 3 4 47 0	45 38 33	(2625.0
237 238 239 240 241	34 30 34 25 303 0 303 15 34 45	0 70 0 70	7·12 11·88 18·88 4·18 7·68	$\begin{array}{c} + 7 & 17 \\ +12 & 9 \\ +19 & 19 \\ + 4 & 17 \\ - & 7 & 53 \end{array}$	34 37 17 34 37 9 303 19 19 303 19 17 34 37 7	34 37 11 303 19 18	45 38 56	(2625*8
96 97 98 99	303 19 5 303 19 5 34 50 34 50	7 65 0 65	6·18 5·91 0·52 0·63	+ 6 23 + 6 6 + 0 32 + 0 39	303 26 20 303 26 3 34 50 32 34 50 39	303 26 12 34 50 35	45 42 12	(2627.7
193 194	303 19 5 34 53 1		3·12 4·94	+ 3 20 - 5 9	303 23 15 34 48 6		45 42 25	2627.9
237 238 239 240 241	34 30 34 25 303 0 303 15 34 45	$ \begin{array}{c cccc} 0 & 73 \\ 0 & 70 \\ 0 & 70 \end{array} $	10.63 15.41 15.44 0.66 4.16	+10 53 $+15 46$ $+15 48$ $+ 0 41$ $- 4 16$	34 40 53 . 34 40 46 303 15 48 303 15 41 34 40 44	34 40 47 303 15 45	45 42 31	2627 :

I.	II.	III.	IV.	v.	VI.	VII.	VIII.	1X.
195 196	34 43 "5 303 30 0		hundredths of an inch. 4.62 6.53	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 47 56 303 23 10	0 / //	。 , , ,, 45 42 23	wave- length. 2627.9
96 97 98 99	303 19 57 303 19 57 34 50 0 34 50 0	65 65 65 65	2·49 2·23 4·34 4·45	+ 2 34 + 2 18 + 4 29 + 4 36	303 22 31 303 22 15 34 54 29 34 54 36	303 22 23 34 54 33	45 46 5	(2630.6)
193 194	303 19 55 34 53 15	57 57	0·61 1·41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303 19 17 34 51 47		45 46 15	2630.7
195 196	34 43 5 303 30 0	54 54	8·15 10·07	+ 8 32 -10 32	34 51 37 303 19 28		45 46 5	(2630.6)
237 238 239 240 241	34 30 0 34 25 0 303 0 0 303 15 0 34 45 0	73 73 70 70 70	14·27 18·99 11·58 2·93 0·59	$\begin{array}{c} +14 & 36 \\ +19 & 26 \\ +11 & 51 \\ -3 & 1 \\ -0 & 36 \end{array}$	34 44 36 34 44 26 303 11 51 303 11 59 34 44 24	34 44 29 303 11 55	45 46 17	(2630.8)
195 196	34 43 5 303 30 0	54 54	51·32 53·71	$+53 \ 36 \ -56 \ 13$	35 36 41 302 33 47		46 31 27	(2664.2)
232 234 235	302 30 0 302 35 0 35 30 0	76 76 76	2·77 7·66 0·16	- 2 49 - 7 48 - 0 10	302 27 11 302 27 12 35 29 50	302 27 11	46 31 20	2664:1
323 324	302 25 0 35 30 0	76 76	2·84 0·00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	302 27 54 35 30 0		46 31 3	(2663.9)
195 196	34 43 5 303 30 0	54 54	53·96 56·38	$+56 28 \\ -59 0$	35 39 33 302 31 0		46 34 17	(2666.3)
323 324	302 25 0 35 30 0	76 76	0·23 2·57	+ 0 14 + 2 37	302 25 14 35 32 37		46 33 42	(2665.8
232 234 235	302 30 0 302 35 0 35 30 0	76 76 76	5·41 10·32 2·51	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	302 24 29 302 24 29 35 32 34	302 24 29	46 34 3	2666.1
225 228 226 227	37 0 0 36 30 0 301 5 0 301 35 0	79 79 79 79	61·41 32·14 53·53 24·15	$\begin{array}{c cccc} -62 & 22 \\ -32 & 39 \\ +54 & 22 \\ +24 & 32 \end{array}$	35 57 38 35 57 21 301 59 22 301 59 32	35 57 29 301 59 27	46 59 1	(2684.4
232 234 235 236	302 30 0 302 35 0 35 30 0 35 35 0	76 76 76 76	29·89 34·72 26·71 21·87	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	301 59 32 301 59 37 35 57 14 35 57 18	301 59 34 35 57 16	46 58 51	2684.2
323 324	302 25 0 35 30 0	76 76	24·21 26·82	$ \begin{array}{r} -24 & 41 \\ +27 & 21 \end{array} $	302 0 19 35 57 21		46 58 31	(2684.0

I.	II.	111.	IV.	v.	VI.	VII.	VIII.	IX.
232 234 235 236	302 30 0 302 35 0 35 30 0 35 35 0	76 76 76 76	hundredths of an inch. 40.61 45.34 37.31 32.46	$-4\overset{'}{1}\ 2\overset{''}{4}$ $-46\ 12$ $+38\ 2$ $+33\ 5$	301 48 36 301 48 48 36 8 2 36 8 5	301 48 42 36 8 4	° ' '' 47 9 41	wave- length.
323 324	302 25 0 35 30 0	76 76	34·83 37·46	$-35\ 30 \\ +38\ 11$	301 49 30 36 8 11		47 9 21	(2691.9)
225 228 226 227	37 0 0 36 30 0 301 5 0 301 35 0	79 79 79 79	50·81 21·49 42·77 13·40	-51 36 $-21 50 $ $+43 26 $ $+13 37$	36 8 24 36 8 10 301 48 26 301 48 37	36 8 17 301 48 32	47 9 52	2692·1 (2692·2)
225 228 226 227	37 0 0 36 30 0 301 5 0 301 35 0	79 79 79 79	35·43 6·09 27·19 2·23	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36 24 1 36 23 49 301 32 37 301 32 44	36 23 55 301 32 41	47 25 37	27 03·6
197 198 200 201	300 59 55 301 10 0 37 3 0 37 12 55	65 65 65 65	25.63 15.74 16.83 . 26.64	+26 28 $+16 16$ $-17 23$ $-27 31$	301 26 23 301 26 16 36 45 37 36 45 24	301 26 20 36 45 30	47 39 35	(2713.7)
225 228 226 227	37 0 0 36 30 0 301 5 0 301 35 0	79 79 79 79 79	21·26 8·10 12·95 16·48	$-21 \ 36 + 8 \ 14 + 13 \ 9 - 16 \ 21$	36 38 24 36 38 14 301 18 9 301 18 39	36 38 19 301 18 24	47 39 58	2713·8 (2714·0)
225 228 226 227	37 0 0 36 30 0 301 5 0 301 35 0	79 79 79 79	3·43 26·04 5·05 34·46	$\begin{array}{rrrrr} - & 3 & 29 \\ + & 26 & 27 \\ - & 5 & 8 \\ - & 35 & 0 \end{array}$	36 56 31 36 56 27 300 59 52 301 0 0	36 56 29 300 59 56	47 58 16	(2727.1)
197 198 200 201	300 59 55 301 10 0 37 3 0 37 12 55	65 65 65 65	7·78 2·14 0·88 8·75	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	301 7 57 301 7 57 37 3 55 37 3 53	301 7 57 37 3 54	47 57 58	2727 0 (2726·9)
197 198 200 201	300 59 55 301 10 0 37 3 0 37 12 55	65 65 65 65	8.68 18.58 17.27 7.59	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	300 50 57 300 50 49 37 20 50 37 20 45	300 50 55 37 20 48	48 14 57	(2739.0)
229 230 231	37 30 0 300 35 0 300 30 0	86 86 86	16·07 7·97 12·87	-16 11 + 8 2 + 12 58	37 13 49 300 43 2 300 42 58	300 43 0	48 15 24	2739·1 (2739·3)
229 230 231	37 30 0 300 35 0 300 30 0	86 86 86	10·99 2·88 7·81	$ \begin{array}{rrrr} -11 & 4 \\ + & 2 & 54 \\ + & 7 & 52 \end{array} $	37 18 56 300 37 54 300 37 52	300 37 53	48 20 31	(2743.0)
197 198 200 201	300 59 55 301 10 0 37 3 0 37 12 55	65 65 65	13·79 23·62 22·23 12·47	-14 15 -24 24 $+22$ 57 $+12$ 53	300 45 40 300 45 36 37 25 57 37 25 48	300 45 38 37 25 53	48 20 8	2742.8

I.	11.	III.	IV.	v.	VI.	VII.	VIII.	IX.
197 198 200 201	300 59 55 301 10 0 37 3 0 37 12 55	65 65 65 65	hundredths of an inch. 18:35 28:21 26:68 17:04	-1857 -2918 $+2733$ $+1736$	300 40 58 300 40 52 37 30 33 37 30 31	300 40 55 37 30 32	48 24 49	wave- length. (2746·0) 2746·1
229 230 231	37 30 0 300 35 0 300 30 0	86 86 86	6·46 1·71 3·27	- 6 31 - 1 43 + 3 18	37 23 29 300 33 17 300 33 18	300 33 17	48 25 6	(2746.2)
229 230 231	37 30 0 300 35 0 300 30 0	86 86 86	5·78 2·33 2·56	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	37 24 11 300 32 36 300 32 35	300 32 36	48 25 47	2746.7
197 198 200 201	300 59 55 301 10 0 37 3 0 37 12 55	65 65 65 65	18·99 28·85 27·38 17·69	$-19 37 \\ -29 48 \\ +28 17 \\ +18 39$	300 40 18 300 40 12 37 31 17 37 31 34	300 40 15 37 31 26	48 25 36	(2746.6)
197 198 200 201	300 59 55 301 10 0 37 3 0 37 12 55	65 65 65 65	22·23 32·12 30·57 20·97	-2258 -3310 $+3134$ $+227$	300 36 57 300 36 50 37 34 34 37 35 2	300 36 53 37,34 48	48 28 58	(2749.1)
229 230 231	37 30 0 300 35 0 300 30 0	86 86 86	2·51 5·65 0·74	- 2 32 - 5 41 - 0 45	37 27 28 300 29 19 300 29 15	300 29 17	48 29 6	2749.0
128 129 131 125 124	301 4 55 301 4 55 300 54 55 37 20 5 37 30 5	67 67 67 67 70	27.80 27.61 18.32 15.66 6.09	$\begin{array}{c} -28 & 39 \\ -28 & 27 \\ -18 & 53 \\ +16 & 18 \\ +6 & 15 \end{array}$	300 36 16 300 36 28 300 36 2 37 36 13 37 36 20	300 36 15 37 36 17	48 30 1	2749 7
229 230 231	37 30 0 300 35 0 300 30 0	86 86 86	2·96 11·25 6·27	$^{+}$ 2 59 $-$ 11 20 $-$ 6 19	37 32 59 300 23 40 300 23 41	300 23 40	48 34 39	2753.0
229 230 231	37 30 0 300 35 0 300 30 0	86 86 86	6·42 14·71 9·74	$\begin{array}{c} + 6 28 \\ -14 49 \\ - 9 49 \end{array}$	37 36 28 300 20 11 300 20 11	300 20 11	48 38 9	2755.5
197 198 200 201	300 59 55 301 10 0 37 3 0 37 12 55	65 65 65 65	31·13 41·00 39·44 29·76	$ \begin{array}{rrr} -32 & 9 \\ -42 & 21 \\ +40 & 44 \\ +31 & 23 \end{array} $	300 27 44 300 27 39 37 43 44 37 44 18	300 27 41 37 44 1	48 38 10	2755.5
197 198 200 201	300 59 55 301 10 0 37 3 0 37 12 55	65 65 65 65	47·45 57·22 55·57 45·88	$ \begin{array}{rrrr} -49 & 0 \\ -59 & 6 \\ +57 & 23 \\ +48 & 23 \end{array} $	300 10 55 300 10 54 38 0 23 38 1 18	300 10 54 38 0 51	48 54 58	(2767:3)
220 221 222 218 219	299 35 0 299 35 0 38 30 0 38 30 0 38 25 0	79 79 79 79 79	27·90 27·82 36·45 36·32 31·56	+28 20 +28 15 -37 1 -36 53 -32 3	300 3 20 300 3 15 37 52 59 37 53 7 37 52 57	300 3 18 37 53 2	48 54 52	2767°2
286 287	38 20 0 299 40 0	84 84	26·85 23·15	-27 7 +23 23	37 52 53 300 3 23	3. 33 2	48 54 45	(2767.1)

I.	11.	III.	IV.	v.	VI.	VII.	VIII.	IX.
286 287	38 20 0 299 40 0	84 84	hundredths of an inch. 10.20 6.27	$-10^{'}$ $18^{'}$ $+620$	38 9 42 299 46 20	0 / "	。 / // 49 11 41	wave- length. 2779.0
220 221 222 218 219	299 35 0 299 35 0 38 30 0 38 30 0 38 25 0	79 79 79 79 79	11·26 11·16 19·96 19·78 14·98	$\begin{array}{c} +11 & 27 \\ +11 & 20 \\ -20 & 16 \\ -20 & 5 \\ -15 & 13 \end{array}$	299 46 27 299 46 20 38 9 44 38 9 55 38 9 47	299 46 24 38 9 51	49 11 43	2779•0
220 221 222 218 219	299 35 0 299 35 0 38 30 0 38 30 0 38 25 0	79 79 79 79 79	5.06 4.95 13.80 13.62 8.84	+ 5 8 + 5 2 -14 1 -13 51 - 8 59	299 40 8 299 40 2 38 15 59 38 16 9 38 16 1	299 40 5 38 16 3	49 17 59	2783.4
286 287	38 20 0 299 40 0	84 84	3·97 0·05	- 4 1 + 0 3	38 15 59 299 40 3		49 17 58	2783.4
321 322	39 0 0 298 55 0	86 86	20·58 23·65	-20 43 +23 49	38 39 17 299 18 49		49 40 14	2798.8
321 322	39 0 0 298 55 0	86 86	0·52 3·26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 59 29 298 58 17		50 0 36	2812.9
321 322	39 0 0 298 55 0	86 86	25·93 23·26	$^{+ 26}_{- 23} {}^{7}_{26}$	39 26 7 298 31 34	-	50 27 17	2831.1
281 284 282 283 285	298 25 0 298 25 0 39 35 0 39 35 0 39 35 0	87 87 87 87 87	5·95 5·81 9·27 9·74 9·60	+ 5 59 + 5 51 - 9 20 - 9 48 - 9 40	298 30 59 298 30 51 39 25 40 39 25 12 39 25 20	298 30 55 39 25 24	50 27 14	(2831.0)
281 284 282 283 285	298 25 0 298 25 0 39 35 0 39 35 0 39 35 0	87 87 87 87 87	0·13 0·36 3·20 2·71 3·58	- 0 8 - 0 22 - 3 13 - 2 44 - 3 36	298 24 52 298 24 38 39 31 47 39 32 16 39 31 24	298 24 45	50 33 32	2835•3
281 284 282 283 285	298 25 0 298 25 0 39 35 0 39 35 0 39 35 0	87 87 87 87 87	7:47 7:59 3:99 4:54 3:58	- 7 31 - 7 38 + 4 1 + 4 34 + 3 36	298 17 29 298 17 22 39 39 1 39 39 34 39 38 36	298 17 25 39 39 5	50 40 50	2840:3
288 289	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	88 88	25·62 30·28	$^{+25\ 45}_{-30\ 26}$	297 50 45 40 4 26		51 6 51	(2857.8)
318 319 320	297 20 0 297 20 0 40 30 0	88 88 88	31·35 31·40 23·73	$+31 30 \\ +31 33 \\ -23 51$	297 51 30 297 51 33 40 6 9	297 51 32	51 7 18	2857·9 (2858·1)
278 279 280	40 35 0 297 25 0 297 25 0	88 88 88	29·57 26·13 26·34	-29 43 + 26 16 + 26 28	40 5 17 297 51 16 297 51 28	297 51 22	51 6 57	(2857.8)

I.	II.	III, 1V.	v.	VI.	VII.	VIII.	IX.
278 280	40 35 0 297 25 0	hundre of an in 88 8.62 88 5.23	nch. – 8 40	40 26 20 297 30 19	0 / //	51 28 0	wave- length. (2871.9)
288 289	297 25 0 40 35 0	88 4·5· 88 9·48		297 29 34 40 25 30	2	51 27 58	(2871.9)
318 319 320	297 20 0 297 20 0 40 30 0	88 10·3· 88 2·7·	4 + 10 24	297 30 25 297 30 24 40 27 13	297 30 25	51 28 24	2872·0 (2872·2)
269 270 271 272	40 50 0 40 55 0 297 10 0 297 5 0	91 21·93 91 27·00 91 18·90 91 23·94	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 28 2 40 27 58 297 28 59 297 28 59	40 28 0	51 29 30	(2872.9)
288 289	297 25 0 40 35 0	88 3·03 88 7·86		297 28 2 40 27 6		51 29 32	(2872.9)
317 318 319 320	297 25 0 297 20 0 297 20 0 40 30 0	88 3.93 88 8.93 88 8.86 88 1.36	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	297 28 58 297 28 59 297 28 54 40 28 38	297 28 57	51 29 51	2873·0 (2873·1)
278 279 280	40 35 0 297 25 0 297 25 0	88 7·19 88 3·4' 88 3·75	7 + 3 29	40 27 51 297 28 29 297 28 48	297 28 39	51 29 36	2873.0
278 280	40 35 0 297 25 0	88 3·89 88 7·59		40 38 50 297 17 23		51 40 48	2880.4
269 270 271 272	40 50 0 40 55 0 297 10 0 297 5 0	91 10·94 91 15·99 91 7·66 91 12·56	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 39 2 40 38 59 297 17 40 297 17 35	40 39 0 297 17 38	51 40 41	(2880.3)
288 289	297 25 0 40 35 0	88 8·1:		297 16 50 40 38 12	-	51 40 41	(2880·3)
317 318 319 320	297 25 0 297 20 0 297 20 0 40 30 0	88 7·2: 88 2·5: 88 2·4: 88 9·7:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	297 17 41 297 17 26 297 17 32 40 39 48	297 17 33	51 41 7	(2880.6)
269 270 271 273	40 50 0 40 55 0 297 10 0 297 5 0	91 6.50 91 11.50 91 3.2 91 8.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 43 29 40 43 26 297 13 13 297 13 12	40 43 27 297 13 12	51 45 7	2883·3
278 279 280	40 35 0 297 25 0 297 25 0	88 8·1 88 11·9 88 11·8	2 -11 59	40 43 13 297 13 1 297 13 6	297 13 3	51 45 5	2883:3
288 289	297 25 0 40 35 0	88 12.5 88 7.5		297 12 24 40 42 34		51 45 5	2883.3

[*		1	1		<u> </u>	1
I.	и.	III. IV.	v.	VI.	VII.	VIII.	1X.
317 318 319	297 25 0 297 20 0 297 20 0	hundredth of an inch. 88 11.59 88 6.95 88 6.77		297 13 21 297 13 1 297 13 1 297 13 12	° ′ ′′ 297 13 11	0 / //	wave- length.
320	40 30 0	88 14.13	+14 12	40 44 12		51 45 31	(2883.5)
275 276 277	296 10 0 41 50 0 41 55 0	93 2·48 93 0·91 93 6·00	- 2 29 - 0 55 - 6 1	296 7 32 41 49 5 41 48 59	41 49 2	52 50 45	(2926·1)
267 268	296 10 0 41 50 0	93 2·85 93 1·20	- 2 51 - 1 12	296 7 9 41 48 48	••	52 50 50	2926.0
310 311 312	41 55 0 41 50 0 296 0 0	93 10·19 93 15·00 93 8·16	+10 11 +14 59 - 8 9	42 5 11 42 4 59 295 51 51	42 5 5	53 6 37	2928:3
267 268	296 10 0 41 50 0	93 30·58 93 26·50	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	295 39 27 42 16 29	••	53 18 31	(2943.9)
275 276 277	296 10 0 41 50 0 41 55 0	93 30.48 93 26.78 93 21.73	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	295 39 33 42 16 45 42 16 43	42 16 44	53 18 36	2944:0
310 311 312 315	41 55 0 41 50 0 296 0 0 296 0 0	93 21.95 93 26.75 93 20.04 93 19.97	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42 16 56 42 16 44 295 39 59 295 40 3	42 16 50 295 40 1	53 18 25	(2943.9)
275 276 277	296 10 0 41 50 0 41 55 0	93 35·50 93 31·94 93 26·89	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	295 34 32 42 21 55 42 21 52	42 21 54	53 23 41	U 2947·3

As in the highest region we have used the lines in the spectrum of the spark between copper electrodes as lines of reference, we add here the measurements and calculated values for these lines, and for the strong magnesium lines which we have sometimes used in interpolating.

COPPER LINES.

I.	II.	111.	IV.	v.	VI.	VII.	VIII.	IX.
327 330 331 328 329	312 55 0 318 5 0 318 5 0 25 0 0 24 45 0	24 24 24 24 24 24	hundredths of an inch. 27.88 18.19 18.81 23.96 10.30	+30 17 +19 46 +20 26 -26 2 -11 11	313 25 17 313 24 46 313 25 26 24 33 58 24 33 49	313 25 10 24 33 53	。 / // 35 34 21	wave- length,
327 330 331 328 329	312 55 0 313 5 0 313 5 0 25 0 0 24 45 0	24 24 24 24 24 24	13·87 4·17 4·73 10·15 3·53	$\begin{array}{c} +15 & 4 \\ +4 & 32 \\ +5 & 8 \\ -11 & 2 \\ +3 & 50 \end{array}$	313 10 4 313 9 32 313 10 8 24 48 58 24 48 50	313 9 55 24 48 54	35 49 30	2148·9

COPPER LINES—(continued).

1.	11.	III. IV.	v.	VI.	VII.	VIII.	IX.
297 298	25 50 0 312 10 0	hundredth of an incl 31 24:22 31 23:66		2 [°] 5 2 [′] 3 5 ^{′′} 5 312 35 29	0 , ,,	36 24 13	wave- length. 2178.8
297 298	25 50 0 312 10 0	31 13·18 31 12·24	-14 11 +13 11	25 35 49 312 23 11		36 36 19	2189.2
325 326	26 0 0 311 55 0	31 22·94 31 25·83	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	25 35 18 312 22 49		36 36 14	2189.2
325 326	26 0 0 311 55 0	31 20·02 22·98	$ \begin{array}{r} -21 & 33 \\ +24 & 45 \end{array} $	25 38 27 312 19 45		36 39 21	21 91·8
297 298	25 50 0 312 10 0	31 10·32 31 9·37	$ \begin{array}{c cccc} -11 & 7 \\ +10 & 5 \end{array} $	25 38 53 312 20 5		36 39 24	(2191.9)
297 298	25 50 0 312 10 0	31 2:37 31 1:46	- 2 33 + 1 34	25 47 27 312 11 34		36 47 56	2199•2
325 326	26 0 0 311 55 0	31 0.65 31 3.19	- 0 42 + 3 26	25 59 18 311 58 26		37 0 26	(2209.9)
291 293 296 297 298 299	26 25 0 26 35 0 26 25 0 25 50 0 312 10 0 311 10 0	37 23·62 37 33·52 34 23·27 31 9·08 31 10·19 39 46·93	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	25 59 45 25 59 5 26 0 5 25 59 47 311 59 2 312 0 2	25 59 40		2209.7
294 295	311 25 0 311 35 0	37 31·70 34 22·73	$\begin{array}{c} +36 & 2 \\ +33 & 53 \\ +24 & 23 \end{array}$	311 58 53 311 59 23	311 59 20	37 0 10	(2209.6)
291 293 296 297 300 294 295 298	26 25 0 26 35 0 26 25 0 25 50 0 26 50 0 311 25 0 312 10 0	37	$\begin{array}{c} -16 & 19 \\ -26 & 27 \\ -15 & 53 \\ +18 & 54 \\ -41 & 50 \\ +24 & 31 \\ +15 & 4 \\ -20 & 13 \end{array}$	26 8 41 26 8 33 26 9 7 26 8 54 26 8 10 311 49 31 311 50 4 311 49 47	26 8 41		2217.5
299 325 326	311 10 0 26 0 0 311 55 0	39 37·91 31 7·68 31 5·40	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26 8 16 311 49 11	311 49 57	37 9 22 37 9 33	(2217.6)
291 293 296 300 294 295 299	26 25 0 26 35 0 26 25 0 26 50 0 311 25 0 311 35 0 311 10 0	37 3·49 37 12·99 34 3·05 39 27·23 37 10·95 34 1·87 39 25·85	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	26 21 16 26 21 5 26 21 44 26 20 58 311 36 42 311 37 0 311 37 33	26 21 16 311 37 5	37 22 5	2228:3
293 296 294 295 299	26 35 0 26 25 0 311 25 0 311 35 0 311 10 0	37 11·58 34 1·65 37 9·51 34 0·51 39 24·52	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26 22 36 26 23 14 311 35 10 311 35 32 311 36 8	26 22 55 311 35 37	37 23 39	2229.6

COPPER LINES—(continued).

I.	II.	III.	IV.	v.	VI.	VII.	VIII.	IX.
291 292 293 296 300 294 295 299	26 25 0 26 30 0 26 35 0 26 25 0 26 50 0 311 25 0 311 35 0 311 10 0	37 38 37 34 39 37 34 39	hundredths of an incb. 11·59 7·30 2·15 12 00 11·52 4·54 13·28 10·15	$\begin{array}{c} +12 & 23 \\ +7 & 47 \\ +2 & 18 \\ +12 & 52 \\ -12 & 17 \\ -4 & 51 \\ -14 & 15 \\ +10 & 49 \end{array}$	26 37 23 26 37 47 26 37 18 26 37 52 26 37 43 311 20 9 311 20 45 311 20 49	26 37 37 311 20 34	° ', ',' 37 38 31	wave- length.
332 333 334 335	27 0 0 26 55 0 310 55 0 311 0 0	39 39 39 39	20·54 15·96 24·32 19·70	$\begin{array}{cccc} -21 & 54 \\ -17 & 1 \\ +25 & 56 \\ +20 & 49 \end{array}$	26 38 6 26 37 59 311 20 56 311 20 49	26 38 2 311 20 53	37 38 34	2242.2
332 333 334 335	27 0 0 26 55 0 310 55 0 311 0 0	39 39 39 39	15.77 11.03 19.47 14.61	$\begin{array}{c} -16 \ 49 \\ -11 \ 46 \\ +20 \ 46 \\ +15 \ 27 \end{array}$	26 43 11 26 43 14 311 15 46 311 15 27	26 43 12 311 15 37	37 4 3 4 7	2246.6
291 292 293 296 300 294 295 299	26 25 0 26 30 0 26 35 0 26 25 0 26 50 0 311 25 0 311 35 0 311 10 0	37 38 37 34 39 37 34 39	16·48 12·16 7·03 16·80 6·62 9·45 18·20 5·31	$\begin{array}{c} +17 & 37 \\ +12 & 59 \\ +7 & 32 \\ +18 & 1 \\ -7 & 3 \\ -10 & 6 \\ -19 & 31 \\ +5 & 40 \\ \end{array}$	26 42 37 26 42 59 26 42 32 26 43 1 26 42 57 311 14 54 311 15 29 311 15 40	26 42 49 311 15 21	37 43 44	2246.6
332 333 335	27 0 0 26 55 0 311 0 0	39 39 39	2·98 7·80 4·27	+ 3 10 + 8 19 - 4 31	27 3 10 27 3 19 310 55 29	27 3 15	38 3 53	2263.6
332 333 334 335 336 337 338 340 339	27 0 0 26 55 0 310 55 0 311 0 0 310 30 0 310 25 0 27 30 0 27 35 0 27 25 0	39 39 39 46 46 46 46 46	16 90 21 60 13 52 18 18 10 33 15 12 11 24 16 00 6 71	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 18 1 27 18 2 310 40 35 310 40 47 310 40 55 310 40 59 27 18 7 27 18 5 27 17 54	310 40 49 27 18 2	38 18 3 7	2276.0
291 292 293 296 300 294 295 299	26 25 0 26 30 0 26 35 0 26 25 0 26 50 0 311 25 0 311 35 0 311 10 0	37 38 37 34 39 37 34 39	48.59 44.59 39.99 48.64 26.44 42.01 50.70 27.31	$\begin{array}{c} +51 & 56 \\ +47 & 36 \\ +42 & 51 \\ +52 & 11 \\ +28 & 11 \\ -44 & 54 \\ -54 & 23 \\ -29 & 7 \end{array}$	27 16 56 27 17 36 27 17 51 27 17 11 27 18 11 310 40 6 310 40 37 310 40 53	27 17 38 310 40 32	38 18 33	(2275.9
336 337 338 340 339	310 30 0 310 25 0 27 30 0 27 35 0 27 25 0	46 46 46 46 46	10·33 5·55 9·30 4·40 13·76	-10 55 $- 5 52$ $+ 9 50$ $+ 4 39$ $+ 14 33$	310 19 5 310 19 8 27 39 50 27 39 39 27 39 33	310 19 6 27 39 41	38 40 19	2294·1

MAGNESIUM LINES.

I.	II.	III.	IV.	ν.	VI.	VII.	VIII.	IX.
129 128 131 134 135 139 140 137	301 4 55 301 4 55 300 54 55 300 4 55 300 4 55 300 0 3 300 0 3	67 67 67 75 75 72 72 72	hundredths of an inch. 68-67 68-85 59-32 10-67 10-39 5-66 5-95 8-75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	299 54 10 299 53 57 299 53 48 299 54 2 299 54 19 299 54 16 299 53 57 38 18 56	299 54 4	0 1 11	wave- length.
$138 \\ 125 \\ 124$	38 15 0 37 20 5 37 30 5	72 67 70	3·42 56·82 47·33	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	38 18 30 38 18 37 38 18 40	38 18 41	49 12 19	2779.4
137 138 139 140	38 10 0 38 15 0 300 0 3 300 0 3	75 72 72 72 72	30·88 25·68 27·86 28·02	$\begin{array}{c} + \ 0 \ 31 \ 31 \\ + \ 0 \ 26 \ 18 \\ - \ 0 \ 28 \ 32 \\ - \ 0 \ 28 \ 42 \end{array}$	38 41 31 38 41 18 299 31 31 299 31 21	38 41 25 299 31 26	49 35 0	2795.2
306 307 308 309	299 15 0 38 45 0 38 30 0 299 30 0	86 86 85 85	8·75 10·89 3·84 6·10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	299 23 49 38 33 59 38 33 52 299 23 51	299 23 50 38 33 55	49 35 2	2795:2
137 138 139 140	38 10 0 38 15 0 300 0 3 300 0 3	75 72 72 72 72	41·09 35·83 37·82 38·21	$\begin{array}{c} +0 \ 41 \ 56 \\ +0 \ 36 \ 42 \\ -0 \ 38 \ 44 \\ -0 \ 39 \ 8 \end{array}$	38 51 56 38 51 42 299 21 19 299 20 55	38 51 49 299 21 7	49 45 21	2802.4
306 307 308 309	299 15 0 38 45 0 38 30 0 299 30 0	86 86 85 85	1·57 0·59 14·16 16·48	$\begin{array}{ccccc} -0 & 1 & 35 \\ -0 & 0 & 36 \\ +0 & 14 & 17 \\ -0 & 16 & 37 \end{array}$	299 13 25 38 44 24 38 44 17 299 13 23	38 44 21 299 13 24	49 45 28	(2802.4)
303 304 305	40 0 0 298 0 0 298 5 0	85 85 85	2·97 0·34 4·48	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39 57 0 298 0 21 298 0 29	298 0 25	50 58 18	2852.0

Remarks on the foregoing tables.

It will be observed that when two or more independent determinations have been made the wave-lengths found are often identical, rarely differ by more than '2 of a tenth-metre. This seems to make the probable error in most cases very small—smaller than we venture to think it really may be, for there are one or two sources of error which are quite sufficient to account for a variation of '2 of a tenth-metre in the wave-length. First the sliding tubes of the telescope, for it has a draw tube as well as the usual rack and pinion arrangement for focusing, in order to allow for the great variations in the focal distance of the uncorrected quartz lenses, and such sliding tubes have always some play, so that in the operation of reversing the photographic plate by turning the sliding tube about its axis there might easily be a small displacement.

Indeed, the measurement of plates taken successively without movement of any part of the apparatus, except the photographic slide, showed that there was such a displacement of the axis, and that it might make an error of $\pm 10''$ in the measurement of the angle, or ± 13 on an average in the value of the wave-length.

Another source of error is the want of sharp definition of some of the lines. Some of the lines are really diffuse, and in every case, as already observed, if the image is correctly focussed on the plate when the telescope is on one side of the collimator, it is always a little out of focus when the telescope is moved round to the other side. Hence there may easily be an error in measuring the distance between the lines which may easily amount to ± 8 " of angular measure, or ± 1 in the value of the wave-length.

Still we do not think the probable error exceeds $\pm .25$ of a tenth-metre.

Determination of the intermediate lines.

The wave-lengths of a sufficient number of lines of reference having been measured by the grating, the intermediate lines have been mapped by means of prisms. For this part of the work a calcite prism of 30°, cut so that one face is perpendicular to the axis of the crystal, was fixed to the end of the collimator, and a similar prism to the end of the telescope, while between them another calcite prism of 60°, cut so that the faces are equally inclined to the axis of the crystal, was maintained by a simple system of linkage at the position of minimum deviation, which is also that of single refraction. Photographs were taken at short intervals all down the scale of the spectrum of the arc and spark simultaneously. The image of the arc was focussed on the slit by the quartz lens already mentioned, and thrown just under the centre. At the same time the spark was made to pass horizontally close in front of the slit, without the interposition of a lens, but just above the centre. In this way two images were impressed on the plate overlapping one another in the middle. The distances between the lines was afterwards measured under the microscope, and the inverse squares of the wavelengths of the intermediate lines deduced by the graphic method of interpolation between those of the lines of reference. A table of inverse squares was used for the reduction to simple wave-lengths.

The following table gives the results. In many cases there is much difference in the relative intensities of the same line in the arc and spark, and in some cases lines are visible in the photograph of the arc which are not in that of the spark, and vice versa. Beyond the wave-length 2327 no spark lines seem to have made any impression on the plates, but the arc lines continue with, however, a sensible falling off in intensity up to the end of the region observed. For this region the copper lines of reference were used, as already explained, and for the highest part of it, above wave-length 2230, quartz prisms were substituted for those of calcite with advantage as regards the amount of light transmitted, but with some loss of dispersion and more of definition.

In the following table the second column gives the wave-length, and the lines MDCCCLXXXIII.

marked with a "c" are probably carbon lines, the first gives approximately the relative intensities with which the lines are impressed on the photographic plates, 1 representing the strongest and 6 the weakest lines. It also indicates whether the line is an arc or a spark-line, a indicating arc-lines; s, spark-lines. Thus 3 a 1 s after a line indicates that its intensity in arc is 3, in spark, 1; 6 a indicates a line which is in arc only and of intensity 6; 2 a s indicates a line of intensity 2 in both arc and spark.

List of ultra-violet iron lines.

	1 1	1	1	11	1	li .		1	1
6 a	2167.4	4 a	2280 0	6 α	2341.2	2 a s	2384.2	2 8	2427.9
6 a	2171.7	6a	2281.8	6s	2341.6	6a 5s	2384.8	6 a s	2428.5
$\overset{\circ}{6}\overset{\circ}{a}$	2173.4	6a	2282.8	68	2341.8	6 a	2385.8	68	2428.7
	2177.0	5 a	2283.0	1 a s	2343.1	48	2386.3	6 a s	2429.0
6 a									
6 a	2178.0	5 a	2283.2	6 a 5 s	2343.6	6a 4s	2387.2	3 a 2 s	2429.7
6 a	2181.5	4 α	2283.6	4 a 3 s	2343.9	6 s	2388.0	6 a s	2430.5
6 a	2183.7	3 a	2284.0	4 α	2344.7	1 as	2388 4	6 a	2430.7
6 a	2186.1	3a	2287.1	3 8	2344.9	6s	2389.2	6 a 2 s	2431.8
6 a	2186.8	3 a	2287.4	6 as	2345.9	3a	2389.9	28	2432.5
6α	2191.3	6a	2287.9	68	2346.4	58	2390.1	48	2433.2
5 a	2195.5	3a	2288.8	1as	2347.8	6 s	2390.7	6 a s	2433.9
5a	2199.3	5 a	2289.9	1 as	2348.0	3 a 4 s	2391.3	6 a 3 s	2434.3
6a	2200.0	4 a	2290.3	68	2349.0	6 a s	2392.4	5 a 3 s	2434.7
$\overset{\circ}{6}\overset{a}{a}$	2200.5	6 a	2290.6	6 a	2349.5	6 a	2392.8	6 a s	2435.6
$\frac{0}{4} \frac{a}{a}$	2207.5	4 a	2290.9	6as	2349.9	6a	2394.1	6 a s	2436.0
			2290 9				2394.7		2436.4
4a	2210.4	6 a		6a 2s	2350.9	68		58	
6 a	2211.4	3 a	2292.3	6as	2351.5	3 a s	2395.2	5 8	2436.9
4 a	2214.1	3a	2293.6	6 8	2352.1	1 a s	2395.4	68	2437.3
3 a	2216.2	3 a	2294.2	58	2353.3	58	2396.5	4. a	2437.9
4 a	2225.2	3 a	2296.8	6a 3s	2354.1	6a	2398.0	2 8	2439.0
3 a	2227.3	3 a	2297.6	3 a s	2354.6	. 68	2398.5	2 a 6 s	2439.4
3a	2229.7	3 a	2298.0	5 8	2354.8	1 a s	2399.0	3a	2439.8
6a	2230.9	4 a	2298.6	6 a 5 s	2355.1	6 a 2 s	2400.0	38	2440.1
6a	2240.2	3 a	2299.0	6a	2355.6	6 a s	2401.0	68	2441.0
6a	2242.2	6 a	2299.2	48	2356.7	6 a	2401.4	6 a	2441.5
	2243.9	3a	2300.0				2401.9		2442.3
$_{6}^{a}$				1 a s	2358.7	6 a 5 s			
5 a	2245.3	5 a	2300.4	6 as	2359.2	6 a 5 s	2402.3	3 a 6 s	2443.7
4α	2248.5	. 4 a	2301.0	2a 1s	2359.7	3as	2404.2	5a 1s	2444.3
4 a	2248.8	3 a	2301.4	2a 1s	2359.9	1 as	2404.5	6as	2444.9
4 a	2250.5	3 a	2303.2	6 a	2360.3	68	2405.5	6a $3s$	2445.4
6 a	2250.6	3a	2303.4	6s	2361:3	1as	2406.3	68	2445.9
6 a	2251.2	5 a	2304.4	4 a 3 s	2361.6	68	2406.6	6 a 3 s	2446.3
6 a	2251.6	5a	2305.8	6s	2362.9	6 a	2406.9	38	2447.1
4 a	2252.8	4a	2306.0	38	2363.3	6a	2407.3	3 a s	2447.5
$\frac{1}{4}a$	2255.4	2 a	2308 6	3 8	2363.5	6 a s	2407.6	6 a	2448.1
$\frac{1}{4} \frac{\alpha}{\alpha}$	2259.2	6a	2309.3	2 a 1 s	2364.4	68	2408.4	6 a	2448.5
4 α	2259.8	6 a	2310.6	6 a	2365.1	1as	2410.2	4.8	2449.6
5a	2260.4	5 a	2311.0	58	2365.3	1 a s	2410.7	6 a 4 s	2450.0
	2260.7	6a					2411.4	6 a	
5a			2311.6	3as	2366.2	6 a			2450.7
6α	2262.4	6 a	2312.0	2a $1s$	2368.2	1 as	2413.0	6 a 5 s	2451.0
6 a	2262.8	2 a	2312.7	4a	2369.1	6as	2413.8	6 a	2451.3
6α	2263.2	6 α	2313.6	5 8	2369.6	6 a s	2414.8	6 a	2451.8
5 a	2264.2	6 a	2316.7	4 a s	2370.1	6a	2415.4	6a	2452.3
5 a	2264.7	5 a	2317.5	4 α	2371.1	6 a 5 s	2416.3	6 8	2452.9
6 a	2265.7	6 a	2317.7	4.8	2372.3	6a	2417.1	3a	2453.2
6a	2266.6	5 a	2319.2	6 a	2372.7	6 a 2 s	2417.5	5 8	2453.5
5a	2266.8	6a	2319.6	4.8	2373.3	6 a 5 s	2418.2	68	2453.8
3 a	2267.2	3 a	2319.9	2a $1s$	2373.4	3 a	2418.9	3 8	2454.3
6a	2268.8	2 a 1 s	2326.9	$\frac{2a}{6a}$	2374.1	6 a	2419.4	6 0	2455.3
4a	2270.5	6α	2329.3	2 a 1 s	2374.9	68	2419.7	68	2455.7
$\frac{4}{a}a$	2271.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2330.9	6 a 3 s	2376.2	6 a	2420.0	6 a	2456.0
4α	2271.8	2 a 1 s	2332.5	6 a	2376'9	6 a	2420.7	68	2456.4
4a	2272.5	6 a	2333.1	6 a	2377.6	6 a	2421.3	2 a 5 s	2457°4
4α	2273.8	6a	2334.2	6 s	2378.2	6 a 3 s	2422.4	6 a	2458'2
4 a	2274.9	6 a	2334.5	68	2378.8	6 a 4 s	2422.9	6 a 1 s	2458.5
6 a	2275.2	6 a	2334.8	2 a 1 s	2379.0	5a $1s$	2423.8	6 a 4 s	2460.2
4 a	2275.7	2 a 1 s	2337.7	2 a 1 s	2380.5	68	2424.3	6 a	2460.8
$\frac{1}{4}a$	2276.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2339.0	$\tilde{1}as$	2381.7	6 a s	2425.0	6 a 3 s	2461.0
$\frac{4}{4}a$	2277.5	3 a	2339.3	3as	2382.7	6a 5s	2425.4	38	2461.4
	2279.7	5 a 6 s	2340.0	2 a s	2383.0	68	2427.0	3 a	2461.9
3 a									

List of ultra-violet iron lines—(continued).

2 a 6 s 6 a 4 s 5 a 4 s 4 s 3 a 4 s 5 a 2 s 5 a 5 s 3 a 6 s 2 s 6 a 3 a 4 s 2 a 5 s 6 a	2462·8 2463·4 2463·7 2464·5 2464·7 2466·4 2467·2 2467·8 2468·4 2469·0 2470·5 2471·9	6 8 5 a 5 8 6 a 1 8 6 a 3 a 4 8 6 a 3 a 8 6 a 1 a 6 8	2507 9 2508 5 c 2508 8 2510 6 c 2511 4 2511 6 2512 0 2512 2 2513 2 c 2514 1 2514 3	5 s 6 a 5 s 6 a 6 s 6 a 6 s 6 a 4 s	2554·8 2554·9 2555·2 2556·0 2556·6 2557·2 2558·3 2558·9 2559·6	6 a 6 a 8 6 a 6 a 8 6 a 8 6 a 8 1 a 8	2608·2 2608·7 2609·1 2609·3 2610·3 2610·7 2611·4	6 a 6 a 6 a 6 a 2 a 6 s	2672·4 2674·6 2675·1 2676·1 2677·2 2678·5
6 a 4 s 5 a 4 s 4 s 3 a 4 s 5 a 2 s 5 a 5 s 3 a 6 s 2 s 6 a 3 a 4 s 2 a 5 s	2462·8 2463·4 2463·7 2464·5 2464·7 2465·4 2466·4 2467·2 2467·8 2468·4 2469·0 2470·3 2470·5 2471·9	5 a 5 s 2 a 5 s 6 a 1 s 6 a 3 a 4 s 6 a 3 a s 6 a 4 s	2508.5 c 2508.8 2510.6 c 2511.4 2511.6 2512.0 2512.2 2513.2 c 2514.1 2514.3	6 a 5 s 6 a 6 s 6 s 6 s 6 a 4 s	2554·9 2555·2 2556·0 2556·6 2557·2 2558·3 2558·9	6 a s 6 a 6 a 6 a s 1 a s	2608·7 2609·1 2609·3 2610·3 2610·7	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2674·6 2675·1 2676·1 2677·2
5 a 4 s 4 s 4 s 3 a 4 s 5 a 2 s 5 a 5 a 6 s 2 s 6 a 3 a 4 s 2 a 5 s	2463·4 2463·7 2464·5 2464·7 2465·4 2466·4 2467·2 2467·8 2468·4 2469·0 2470·5 2471·9	5 s 2 a 5 s 6 a 1 s 6 a 3 a 4 s 6 a 3 a s 6 a 4 s	c 2508·8 2510·6 c 2511·4 2511·6 2512·0 2512·2 2513·2 c 2514·1 2514·3	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2555·2 2556·0 2556·6 2557·2 2558·3 2558·9	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2609·1 2609·3 2610·3 2610·7	$egin{array}{cccc} 6a & & & & & & & & & & & & & & & & & & &$	2675·1 2676·1 2677·2
4 s 4 s 4 s 3 a 4 s 5 a 2 s 5 a 5 a 6 s 2 s 6 a 3 a 4 s 2 a 5 s	2468·7 2464·5 2464·7 2465·4 2466·4 2467·2 2467·8 2468·4 2469·0 2470·3 2470·5 2471·9	2 a 5 s 6 a 1 s 6 a 3 a 4 s 6 a 3 a s 6 a 4 s	2510.6 c 2511.4 2511.6 2512.0 2512.2 2513.2 c 2514.1 2514.3	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2556·0 2556·6 2557·2 2558·3 2558·9	6 s 6 a 6 a s 1 a s	2609·3 2610·3 2610·7	$\begin{bmatrix} 6s \\ 6a \\ 2a & 6s \end{bmatrix}$	2676·1 2677·2
4 s 3 a 4 s 3 s 5 a 2 s 5 a 5 s 3 a 6 s 2 s 6 a 3 a 4 s 2 a 5 s	2464·5 2464·7 2465·4 2466·4 2467·2 2467·8 2468·4 2469·0 2470·3 2470·5 2471·9	6 a 1 s 6 a 3 a 4 s 6 a 3 a s 6 a 4 s	c 2511·4 2511·6 2512·0 2512·2 2513·2 c 2514·1 2514·3	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2556·6 2557·2 2558·3 2558·9	$egin{array}{cccc} 6\ a \ s \ 1\ a\ s \end{array}$	2610·3 2610·7	$egin{array}{cccc} 6 \ a \ 2 \ a \ 6 \ s \end{array}$	2677.2
3 a 4 s 3 s 5 a 2 s 5 a 5 a 6 s 2 s 6 a 3 a 4 s 2 a 5 s	2464·7 2465·4 2466·4 2467·2 2467·8 2468·4 2469·0 2470·3 2470·5 2471·9	6 a 3 a 4 s 6 a 3 a s 6 a 4 s	2511·6 2512·0 2512·2 2513·2 c 2514·1 2514·3	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2557·2 2558·3 2558·9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2610.7	2 a 6 s	
3 s 5 a 2 s 5 a 5 s 3 a 6 s 2 s 6 a 3 a 4 s 2 a 5 s	2465·4 2466·4 2467·2 2467·8 2468·4 2469·0 2470·3 2470·5 2471·9	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2512·0 2512·2 2513·2 c 2514·1 2514·3	$\begin{array}{c c} 6 & a \\ & & 6 & s \\ & & 5 & s \\ 6 & a & 4 & s \end{array}$	2558·3 2558·9	1 a s			2678.5
5 a 2 s 5 a 5 s 3 a 6 s 2 s 6 a 3 a 4 s 2 a 5 s	2466·4 2467·2 2467·8 2468·4 2469·0 2470·3 2470·5 2471·9	$\begin{bmatrix} 3 & a & 4 & s \\ 6 & a & & & \\ 3 & a & s & & \\ 6 & a & & & 4 & s \end{bmatrix}$	2512·2 2513·2 c 2514·1 2514·3	$\begin{array}{c c} & 6s \\ & 5s \\ 6a & 4s \end{array}$	2558.9		2611.4		
5 a 5 s 3 a 6 s 3 s 2 s 6 a 3 a 4 s 2 a 5 s	2467·2 2467·8 2468·4 2469·0 2470·3 2470·5 2471·9	$\begin{array}{c c} 6 \ \alpha \\ 3 \ \alpha \ s \\ 6 \ \alpha \\ \end{array}$	2513·2 c 2514·1 2514·3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6 a	2679.9
$egin{array}{cccccccccccccccccccccccccccccccccccc$	2467·8 2468·4 2469·0 2470·3 2470·5 2471·9	$egin{array}{cccccccccccccccccccccccccccccccccccc$	c 2514·1 2514·3	6a 4s	9550.6	6 a	2612.3	58	2680.4
$egin{array}{cccccccccccccccccccccccccccccccccccc$	2468·4 2469·0 2470·3 2470·5 2471·9	6 a 4 s	2514.3			1 a s	2613.3	6 a	2680.8
$egin{array}{cccccccccccccccccccccccccccccccccccc$	2469·0 2470·3 2470·5 2471·9	48			2560.0	6 a	2614.0	6 a	2681.5
$egin{array}{cccccccccccccccccccccccccccccccccccc$	2470·3 2470·5 2471·9			6 a	2560.3	6 a	2615.0	5 8	2682.0
$egin{array}{cccc} 6\ a \ 3\ a & 4\ s \ 2\ a & 5\ s \end{array}$	2470·5 2471·9	1a 6s	2514.7	6 a	2560.9	1 a s	2617.2	58	2682.4
$egin{array}{cccccccccccccccccccccccccccccccccccc$	2471.9		c 2515.8	6 a	2561.5	$\mid 6a \mid$	2617.6	$\mid \mid 6 a \mid$	2683.5
2 a 5 s		6a	2516.3	6 a	2561.9	6a	2618.3	6 a 1 s	2684.2
1		6 a 3 s	2516.8	2 a s	2562.3	48	2618.6	68	2685.7
6a	2472.4	5a	2517.4	2 a s	2563.2	5 a s	2619.9	6 a	2686.0
	2472.7	3 a 6 s	2517.8	6 a	2564.2	58	2620.4	6 a	2686.8
58	2472.9	6 a	2518.5	6 a	2565.1	3 a s	$2621 \cdot 2$	6a	2687.3
3 a s	2474.5	3 a s	c 2518·8	48	2566.0	6s	$2622 \cdot 6$	3 a s	2688.8
68	2474.9	5 a 6 s	2519.3	3 a s	2566.7	3a 6s	2623.1	5 a	5689.3
68	2475.5	6 a 3 s	2520.8	5 8	2568.1	6 a	2623.6	5 a	2689.5
6 a	2475.3	6 a 3 s	2521.5	6 a s	2568.6	1 a s	2625.2	6 a	2690.9
6 s	2476.0	1a 2s	2522.5	6 a s	2569.4	6 a s	2626.2	68	2691.2
5 a 6 s	2476.5	5 a 6 s	2523.3	5 a	2570.1	6 a	2626.8	6 a	2691.7
58	2477.1	2 a 6 s	c 2523·9	48	2570.6	1 a s	2627.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2692.1
68	2477.9	5a	2524.7	68	2571.2	6a $5s$	2629.2	68	2693.4
1 a 3 s	2478.3	6 a 2 s	2525.1	6 a	2572.5	6a $5s$	2629.7	5 a	2694.0
6 8	2479.0	5 a 2 s	2526.0	68	2572.8	1 as	2630.7	6 a	2694.4
6 a	2479.2	58	2526.7	6 a 3 s	2574.0	$\begin{array}{c c} 1 & a & s \\ 1 & a & s \end{array}$	2631.0	68	2694.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2479.5	2a 5s	2527.1	6 a	2574.8	5a 6s	2632.0	5a	2695.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2480.0	$\frac{2a}{6a}$	2527.9	5a		6a			
68	2480.7	$\begin{array}{c c} 6a \\ \end{array}$	c 2528·1	1	2575.3	5 s	2632.3	4 a	2695.6
68	2481.3			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2575.7		2632.9	6 a	2695.9
	2481.8	3 a 6 s	2528.9		2576.2	6 8	2635.1	6 a	2696.6
6 a 3 s		28	2529.2	4 8	2576.5	3 a 6 s	2635.5	48	2697.0
38	2482.4	3 a	2529.6	3 a s	2577.4	бав	2636.1	6 a	2697.7
1 a 6 s	2482.9	68	2529.9	6 a	2578.3	6 a	2636.6	4 a 5 s	2698.6
68	2483.3	4 a 6 s	2530.4	6 a	2578.7	3 8	2637.3	68	2699.8
3 a s	2483.7	6 a	2531.1	68	2578.9	4.8	2639.2	6a 6s	2701.2
6 a	2484.7	5 a 6 s	2532.0	6 a	2579.3	68	2640.7	6a	2702.6
6 a	2485.7	6 a	2532.4	6 a	2579.5	4 a 6 s	2641.4	1 8	2703.6
5a 2s	2486.1	6 a	2532.6	6 a	2579.9	6 s	2641.7	3 a	2705.6
5 a	2486.4	3 a 2 s	2533.4	6 a	2580.3	3a 6s	2 643·8	1a 3s	2706.0
5 a	2486.8	6a 2s	2534.2	68	2580.6	6 a 3 s	2644.9	6 a 4 s	2706.7
5 a	2487.1	2 a 3 s	2535.2	6 a	2580.9	5a	2645.2	3 a	2708.1
1 a 3 s	2487.7	5 a 1 s	2536.6	4 a	2581.7	6s	2645.8	4 8	2708.7
6 a	2488.7	3 a	2536.9	4 a 3 s	2582.0	4a 6s	2647.3	6 as	2709.7
4 8	$2489 \cdot 2$	4 8	2538.0	2 a 6 s	2584.0	48	2649.2	4 a 6 s	2710.1
1 a 2 s	2489.5	5 a 1 s	2538.6	1 a s	2585.4	6 a 5 s	2650.4	3 a 4 s	2711.2
1a 2s	2490.5	6 a	2539.1	3 a s	2587.5	6 a	2650.9	3s	2711.5
2 a	2491.0	58	2540.4	68	2588.2	68	2652.2	68	2711.9
3 8	2491.1	2 a 4 s	2540.8	6 8	2590.0	6s	2653.3	6 a	2713.5
6 a s	2492.0	48	c 2541.6	3 a s	2591.0	6 s	2654.4	1 a s	2713.8
3a 1s	$2492 \cdot 9$	3 a 6 s	2541.7	6 a	2591.7	5 a s	2655.7	6 α	2714.4
5 a s	2493.7	68	2542.4	3 s	2592.2	6 a	2656.4	6 a	2714.9
6 a	2493.9	6 a 3 s	2543.0	3 a s	2593.1	6 a 3 s	2657.8	6 a 3 s	2715.7
5 a 4 s	2495.6	3 a 6 s	2543.7	6 a	2593.5	5 a	2660.8	6 a	2717.4
3a 6s	2496.3	4 a	2544.5	68	2594.5	4 a 6 s	2661.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2718.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2497.5	58	2544.9	6 a	2595.2	68	2662.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2718.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2498.7	2 a 6 s	2545.8	6a	2596.0	5 a	2663.5	5a	2719.7
48	2500.7	5 a s	2546.6	1 2 8	2597.8	6a	2664.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2720.3
2 a 6 s	2500.9	68	2547.0	1 a s	2598.9	6 a 1 s	2664.2	68	2721.5
5a	2501.4	6 a	2547.8	6 a	2599.7	5a	2665.7	68	2721.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2502.1	5 8	2548.4	6 a	2603.5	$\begin{array}{c} 3a \\ 1as \end{array}$	2666.1	58	
$\begin{array}{c c} 6a & 2s \\ 6a \end{array}$	2503.0	58	2549.0	68	2603.8	68	2666.7	1a 4s	2722.3
38	2503.1	58	2549.1	6 a		6 a			2723.1
	2503.6		25491		2604.4		2667.2	5 a 3 s	2724.3
38		2 a		58	2604.9	68	2668.5	5 a	2725.5
6 a s	2504.9	5 8	2549.7	58	2605.1	6 a	2668.7	68	2726.0
6 a	2505.2	58	2550.3	3 a	2605.3	6 8	2669.2	4 a 1 s	2727.1
38	2505.8	6 a s	2550.8	6s	2605.6	68	2669.7	6 a	2727:5
6 a	2506.2	6a	2552.3	58	2606.1	6 a	2669.9	6a 5s	2728.3
	c 2506.6	6 a s	2552.8	6 a s	2606.5	68	2670.8	68	2729.1
3 a 6 s	2507.6	68	2553.4	3 a s.	2606.7	6 a 5 s	2671.8	5 a 3 s	2730.2

List of ultra-violet iron lines—(continued).

68	2731.5	6 8	2764.7	6 a s	2803.2	6 a 4 s	2848.0	5 a s	2894.0
6s	2732.5	68	2765.3	6 8	2803.8	6 a s	2848.2	5 a 4 s	2894
2 a 4 s	2733.1	6 a	2766.8	6 a 5 s	2804.2	68	2849.3	58	2896
$\frac{2}{6}a$	2733.7	3 a 1 s	2767.2	68	2804.9	68	2855.3	6 a	2897
6a	2733.9	6 a 4 s	2768.8	68	2805.4	68	2856.7	5 a	2898
3a $5s$	2735.0	$\begin{vmatrix} 6a & 4s \end{vmatrix}$	2769.1	3 a 6 s	2806.7	48	2857.9	5 a	2900
5a $1s$	2736.5	6 a	2769.4	6 a	2807.9	6 a	2858.3	5 a	2901
3a 6s	2736.9	6 0 8	2770.3	6 a s	2809.7	68	2860.9	68	2902
1 a s	2739.1	68	2771.1	68	2810 9	6s	2862.1	6 a	2903
5 s	2741.1	2a 5s	2771.9	6 a	2811.7	6 a	2862.4	6 a s	2905
1a 5s	2742.0	6 a	2773.1	68	2812.2	$\frac{4}{a}$	2863 1	6 u s	2907
3a 2s	2742.8	6a $5s$	2774.5	2a 4s	2812.8	4 a	2863.6	6 a	2908
6 a	2743.3	68	2776.1	68	2813.4	68	2864.7	6 a	2908
3 a 5 s	2743.7	68	2776.9	6 a	2815.1	5 a	2866.2	68	2910
5a	2744.2	68	2777.7	6 a s	2817.0	68	2866.5	1 a 6 s	2911
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2746.1	4a 5s	2777.9	6 a s	2819.0	6 a	2867.1	6 a	2913
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2746.6	6a	2778.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2820.4	6 a	2868.0	5 a 6 s	2917
1 as	2749.0	6a 2s	2778.9	3 a 6 s	2822.9	3 a 6 s	2869.0	6 a	2920
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2749.8	5a 6s	2781.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2823.9	68	2870.7	68	2921
6a	2750.6	18	2783.4	3 a 6 s	2825.1	4 a 5 s	2872.0	6 a s	2922
5 s	2750.8	6a	2784.2	68	2827.0	48	2873.0	6 a	2923
6 s	2752.1	38	2785.1	6 as	2827.3	3 a	2873.6	6a	2924
6a $1s$	2753.0	1a 3s	2788.0	6a5s	2828.3	6a 5s	2874.9	6 a	2925
6 a	2753.5	6a	2789.5	28	2831.0	68	2876.4	6 a 2 s	2926
6 α	2753.9	68	2790.3	$3a \stackrel{2}{6}s$	2831.8	4 a	2876.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2928
6a	2754.3	6 a	2791.5	5a	2832.4	$\frac{1}{4}a$	2878.2	68	2931
1 as	2755.5	$\begin{array}{c} 6a \\ \end{array}$	2792.2	5 a	2832.8	6 a 5 s	2880.4	5a 6s	2932
3a	2756.2	48	2793.3	38	2835.2	6a $4s$	2883.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2936
o u 6 s	2756.9	3 a	2794.5	68	2836.7	68	2885.5	5a	2937
4a	2757.2	68	2794.3	5a 6s	2837.7	6 a	2885 8	4 a 6 s	2938
4 a	2759.7	5 a s	2797.4	6a	2839.6	6a	2887.3	6 a	2939
3 <i>a s</i>	2761.7	3a	2797.9	6 a 3 s	2840.3	68	2887.6	2 a	2939
3 и s 4 а	2761.9	6a 4s	2798.8	6 a s	2843.1	6 a	2889.2	6 a	2940
± a 6 s	2762.4	6a	2799.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2843.6	6a	2891.2	6a 2s	2943
4a	2763.0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2800.1	5a 48	2845.3	6 a	2892.0	6a	2944
4 a 6 s	2763.6	$\begin{array}{c} 6a \\ 3a \end{array}$	2800.1	6 a	2846.5	6a	2893.2	U	
6a	2764.0	6 a	2801.8	0 10	40±00	U W	40804	0	2947
o u	2104.0	0.4	2001'8						

The accompanying map is drawn to a scale double that of ÅNGSTRÖM'S and CORNU'S maps of the solar spectrum. Those lines which are common to both arc and spark are drawn right across from top to bottom, while those which are in the arc only are not continued to the bottom, and those which are in the spark only do not begin at the top; so that the upper portion of the map represents the arc spectrum, the lower the spark spectrum, and they overlap in the middle.

We do not pretend to say that every line in this map really belongs to iron, for commercial iron wire was used to produce it, and the map may therefore probably include lines of a good many metals, certainly manganese lines in the arc, but it will not the less serve the purpose for which it has been made, namely: for reference in determining the approximate wave-lengths of lines of any spectra.

PART II.

(Received June 15, 1882.)

The account of the ultra-violet spectra of fifteen metals here recorded is a first instalment of the results of observations which we have accumulated during the past three years, but have not heretofore been able to reduce. During that time we have taken some thousands of photographs of the electric arc under various conditions, and especially in crucibles of lime and magnesia (as previously described by us), and in the presence of most of the known metals; but with the exception of Cornu's map of the ultra-violet solar spectrum giving the chief iron lines and a few of those of other elements, up to the line U we have had little to aid us in the exploration of a new field and the assignment of the several lines to the elements producing them, and the measurement of our many photographs has cost both time and patience. W. A. MILLER long ago published an account of his photographs of the spark spectra of the elements, and Mr. Hartley has recently (Trans. Roy. Dublin Soc.) published photographs of the spark spectra of several elements which are a great improvement on those previously published. But those give spark spectra only, are taken with an apparatus of small dispersion, and are not reduced to scale, so that they give qualitative rather than quantitative results. The spectra which we here describe are those of the arc up to the wave-length 2200, and we give in each case the approximate wavelengths of the lines observed. For some few of the lines of tin and aluminium the wave-lengths have been determined by means of a grating as described in the first part of this paper, but in all other cases they have been derived by interpolation from the wave-lengths of the neighbouring iron lines. In the map which accompanies this paper we have given in the top line the principal lines of iron for convenience of reference, and in the lowest line the arc lines of carbon with which it is necessary to be acquainted as they are always present, though varying much in intensity, in the arc taken between carbon electrodes. The scale of this map is one-half that of Angström's "Normal Solar Spectrum."

We have already, in describing the visible spectra of the alkali metals and that of magnesium, called attention to probable harmonic relations between the lines. This relation manifests itself in three ways—first, by the repetition of similar groups of lines; secondly, by a law of sequence in distance, producing a diminishing distance between successive repetitions of the same group as they decrease in wave-length; and thirdly, a law of sequence as regards quality, an alternation of sharper and more diffuse groups, with a gradually increasing diffuseness and diminishing intensity of all the related groups as the wave-length diminishes.

The first relationship has long since been noticed in the case of the sodium lines which recur in pairs, and we have observed that the potassium lines between the extreme red and violet pairs are repetitions of a quadruple group, while the lithium

lines (with the exception of the blue line mentioned below) are single, and one set of those of magnesium triplets. We now record a second harmonic* series of potassium lines which appear to be pairs, and the violet pair, and possibly the red pair too, belong to this series. Lithium shows a second harmonic series of single lines high up on the Calcium gives a long series of well marked triplets; zinc likewise gives a series of triplets; aluminium gives pairs, and in the highest region triplets; thallium gives a series which seem to be quadruple groups with two of the four lines in each of much greater intensity than the rest. The alternations of sharper and more diffuse groups are generally apparent and are very marked in the cases of calcium and zinc. The diminishing distance and intensity and increasing diffuseness of successive repetitions of the same group as the wave-length diminishes, are in all the cases mentioned very plain. In all these cases the different lines forming a group are tolerably close to one another, so that successive repetitions of a group do not overlap one another, but it may be that in other cases the lines forming one group may be so far apart that the most refrangible line of one group may be more refrangible than the least refrangible line of the next repetition of the group; the groups and their sequence will thus be much less easily recognised.

Potassium.

The ultra-violet spectrum of potassium, so far as we have observed it, is apparently one harmonically related series of which the first member above the visible spectrum is a double line just below the solar line O; the next falls between Q and R, and the others follow at decreasing intervals, the seventh and last that we have observed falling just above U. It is only in the case of the line near O that we have been able to make sure that it consists of a pair of lines, but it is very probable that all are pairs in reality; all are strongly reversed, as might be expected from the volatility of the metal, and expanded when a fresh quantity of the metal or its compounds is introduced into the arc, so that the separation of the pairs, if such they be, could not be seen, while the more refrangible lines die away and are not recognisable as bright lines amongst the many lines which come out in the arc, as the alkali metal is dissipated. The line between Q and R, which is a strong line, happens to be in a region where the lines of iron, manganese, and chromium lie very closely, so that we cannot pronounce with certainty that it is a double line.

^{*} By an "harmonic series" of lines we merely mean a series of overtones of a fundamental vibration we do not mean that they follow the simple arithmetical law of an ordinary harmonic progression, but are comparable rather with the overtones of a bar or bell than with those of a uniform stretched string.

T			
ν_{α}	TASSIU	74. II	20.00
	LASSIU	IVI II	1100.

Approximate wave-length.	Remarks.
$egin{array}{c} 3445.0 \ 3443.6 \ 3216.5 \ 3101.0 \ 3033.0 \ 2992.0 \ 2963.4 \ 2942.0 \end{array}$	Double line. All are easily reversed. The lines become weaker as they are more refrangible.

Sodium.

The sodium lines observed by us also form one apparently harmonic series with the double line, wave-length 3301, observed by Cornu. In this case also we have not been able to make out that any of the lines above 3301 are double, as when there is enough sodium present to develop them decidedly they are always more or less diffuse and reversed. Indeed, the line at 3301 is a very close pair and it is not often seen as two lines.

One line is so near to the very strong magnesium line, wave-length 2852, that the apparent development of the magnesium line by sodium was for some time an enigma to us. The sodium line is a little less refrangible than the magnesium line.

Sodium lines.

Approximate wave-length.	Remarks.
3301·0 2853·3 2679·0 2593·3	Cornu's double line. All the lines are easily reversed.

Lithium.

We have already described one apparently harmonic series of lithium lines extending into the ultra-violet up to about wave-length 3799. This series we described as all single lines though alternately sharp and diffuse. This description is correct, except that we have since found that one line of the series, namely, the strong blue line at wave-length 4604, is really a double line. When a fresh dose of lithium, or of some one of its compounds, is introduced into the arc, a second weaker line comes out

on the more refrangible side of the strong blue line, and gives to it all the appearance of a reversal with an expansion of the bright wings unequally extended on the two sides. As the strong blue line is, however, often really reversed, the effect is then that of a double reversal, that is to say, the appearance is that of a broad bright band with a narrower dark band within it and a bright line in the middle of the dark band. The second line rather quickly dies out as the lithium evaporates, leaving the strong blue line comparatively permanent. We have never observed any such second line, or companion, to any of the other lines of lithium. The new series begins with a line at wave-length about 3232, and dies out with a very diffuse line at about wave-length 2359. The following is a list of the ultra-violet lines we have observed.

Approximate wave-length.	Remarks.	Approximate wave-length.	Remarks.
3984·5 3913·5 3862·3 3799·0 3232·0 2741·0	Diffuse. Somewhat obscured by the cyanogen bands in this region. Reversed.	2561 5 2475 0 2425 5 2394 5 2373 5 2359 0	Reversed. " Diffuse. Very diffuse. Very diffuse and weak.

Barium.

The barium lines are numerous, but do not fall into easily recognised harmonic series.

Barium lines.

Approximate wave-length.	Remarks.	Approximate wave-length.	Remarks.
3991·8 3908·5 3891·0 3793·5 3660·7 3598·7 3592·8 3579·1 3544·0 3524·5 3499·2 3419·3 3375·6 3354·8 3347·7	Very strong, reversed.	$\begin{array}{c} 3320 \cdot 9 \\ 3279 \cdot 8 \\ 3261 \cdot 0 \\ 3070 \cdot 3 \\ 2785 \cdot 1 \\ 2771 \cdot 0 \\ 2739 \cdot 0 \\ 2702 \cdot 0 \\ 2647 \cdot 0 \\ 2634 \cdot 5 \\ 2596 \cdot 7 \\ 2542 \cdot 7 \\ 2347 \cdot 0 \\ 2335 \cdot 0 \\ 2304 \cdot 5 \\ \end{array}$	Strong. Very strong. Strong.

Strontium.

Strontium, and its compounds, produce a line at wave-length 3705 coincident, or nearly so, with one of the lines ascribed to calcium by Cornu. We have so often observed this line much reinforced by strontium without any increase of the other calcium lines which are always present in the arc from calcium in the carbon electrodes, that we think we are justified in putting down a strontium line at this place. Two other lines of this metal are close to, but not coincident with lines of barium.

STRONTIUM lines.

Approximate wave-length.	Remarks.	Approximate wave-length.	Remarks.
3705·0 3653·0 3547·0 3527·0 3498·0 3464·0	Coincident or nearly so with a calcium line.	3458·0 3379·5 3364·8 3305·2 2931·1	Diffuse.

Calcium.

Cornu has mapped two calcium lines, one on either side of the solar line M, and four other lines, of which one is coincident with the solar line R, one slightly less refrangible, and the other two more refrangible. One of these lines, at wave-length 3168.5, we have never certainly seen, but the others are well developed when calcium compounds are put into the arc. Besides these we have always seen when calcium, or one of its compounds, is present in moderate quantity a series of triplets analogous to those of magnesium. Each triplet consists of two strong lines with a rather weaker line on their more refrangible side. This series appears to be harmonically related to the well-known blue triplet at wave-length 4454-24. The first repetition of this triplet occurs close to H, one line of the triplet falling below H, while the other two lines fall between H and K. The next triplet falls between N and M, and the next between O and N, and so on at decreasing intervals, the most refrangible repetitions becoming very faint and diffuse, so that in the last, a little below S, we have only been able to distinguish the strongest two lines of the triplet. The triplets are alternately diffuse and sharp, those near H, between O and N, and so on alternately, The diffuse triplets are stronger than the others and more easily reversed. Beyond this series we have noticed only one calcium line, and that is high up on the scale, at wave-length about 2398.

CALCIUM lines.

Approximate wave-lengths.	Remarks.	Approximate wave-lengths.	Remarks.
3967·7 3972·3 3956·0 3947·9 3933·0 3736·4 3705·5 3644 0 3631·0 3623·5 3486·5 3474·5 3468·0 3359·5 3347·5 3342·0	H. Sharp triplet. K. Mapped by Cornu. Ditto. Very strong. Readily reversed. Sharp triplet. Very strong.	3285·0 3273·5 3268·5 3224·5 3213·0 3208·0 3181·0 3179·0 3168·5 3158·8 3151·0 3141·0 3136·0 3117·5 3108·0 2398·0	Sharp triplet. Diffuse triplet. Mapped by Cornu. R. ditto. Ditto, not seen by us. Mapped by Cornu. Weak, very diffuse.

Zinc.

Zinc is another metal which gives a well-marked apparently harmonic series of triplets, but the different lines of each group are further separated than in the calcium or magnesium triplets. The middle line of the first triplets confounds with the sodium pair wave-length 3301, but by reason of the diffuse character of the zinc line we have not been able to decide whether the coincidence is more than approximate.

ZINC lines.

Approximate wave-lengths.	Remarks.	Approximate wave-lengths.	Remarks.
3342·0 3301·0 3281·0 3070·0 3035·0 3017·0 2800·0 2770·0 2756·0 2713·3 2684·0 2670·5	} Diffuse.	2608·5 2582·0 2569·7 2516·0 2491·5 2480·0 2464·5 2440·0 2430·0	Diffuse. Very diffuse.

Mercury.

As might be expected from its volatility, it is difficult to obtain lines of mercury in the arc; but one line gives a reversed image of itself at wave-length 2536.8. This line is very bright in the flame of cyanogen, containing vapour of mercury.

Gold.

Gold also gives us but few lines. The three lines we record are perhaps harmonically related.

GOLD lines.

Approximate wave-length.	Remarks.
3122·8 2675·4 2427·5	Reversed. Ditto.

Thallium.

Groups of thallium lines manifestly similar to one another recur, and are probably harmonically related. This recurrence is more evident in the photographs in which the lines which are expanded and reversed by the introduction of fresh metal are at once recognised. The pairs at 2921, 2710, 2609, and the lines at 2552, 2517 seem to fall into one series.

THALLIUM lines.

Approximate wave-length.	Remarks.	Approximate wave-length.	Remarks.
3775·6 3528·3 3517·8 3228·1 2943·9 2921·3 2917·8 2895·2 2825·8 2826·9	brace Very strong.	2714·6 2710·4 2708·8 2699·7 2665·0 2652·3 2609·4 2608·6 2552·0 2517·0	Very diffuse. Reversed. Strong, diffuse reversed. Very diffuse. Diffuse. Reversed. Strong, reversed. Reversed. Diffuse.

Aluminium.

The spectrum of aluminium is comparatively simple. The well-known pair of lines between H and K seem to be repeated twice in the region above without much, if any, diminution of strength, but we have not observed any such lengthened sequence of repetitions of these lines as we have of the lines of magnesium and other metals. Higher on the scale we come to another series of groups which are triplets, or perhaps quadruple groups, for the first and strongest group shows a faint fourth line which we have not observed in the succeeding groups. The repetitions we record are only two,

but they lie in a part of the spectrum so near the limit of transparency of calcite that it is quite possible that there may be more beyond, which will show themselves when quartz prisms are used; a strong triplet near N appearing in the spark, wave-length about 3605, 3598, 3585, does not show in the arc so far as we have observed.

A	Ţ	TT	M	IN	шт	li	nes.

Approximate wave-length.	Remarks.	Approximate wave-length.	Remarks.
2659·8 2652·0 2574·5 2567·5 2378·4 2373·2 2366·9	Strong, frequently reversed. """ A fourth faint line close to the middle line of this group. Middle line very strong, generally reversed.	$\begin{array}{c} 2268\cdot7 \\ 2263\cdot1 \\ 2257\cdot3 \\ 2216\cdot0 \\ 2210\cdot0 \\ 2205\cdot0 \end{array}$	Strong, diffuse. "" Strong, diffuse. Diffuse.

Lead.

The lines of lead are numerous and strong, and many of them readily reversed. We have not yet traced any probably harmonic series amongst them.

Lead also gives some indefinite bands of continuous light about the region wavelength 2500.

LEAD lines.

Approximate wave-length.	Remarks.	Approximate wave-length.	Remarks.
4019·0 3801·0 3739·3		2801·1 2721·0 2706·1	Often reversed.
$3683.3 \\ 3670.7$	Strong, often reversed.	2697·0 2662·7	Middle of a very diffuse band.
$3639.3 \\ 3572.0$	" "	$2650.5 \\ 2627.8$	Diffuse.
$\frac{3260.0}{3238.6}$	Nearly coincident with a line of tin.	2613·7 2575·7	Strong, often reversed. Very diffuse.
$3219.6 \\ 3118.5$		$2476.5 \ 2446.1$	Strong, reversed.
$2981.0 \\ 2973.5$	Weak lines.	$2443.7 \\ 2428.5$	" " "
$\begin{array}{c} 2967 \cdot 0 \\ 2872 \cdot 0 \end{array}$	J	$2411.5 \\ 2401.8$))))
2850.5	A little above the magnesium line, sometimes hidden by the expansion of the latter.	2399·4 2393·7 2388·8	Very strong, reversed.
2832.9	Very strong and diffuse.	2332.0	
2822.5	Generally reversed.		

Tin.

Tin is remarkable for the number and strength of its lines in the higher region of the spectrum, while its lines of lower refrangibility are so feeble that we have never seen any in the arc in the visible part of the spectrum. Cornu has recorded one line at wave-length 3260, and we have had no difficulty in recognising this line, but a line very nearly in that place is also developed by lead when other tin lines are not developed, and we have not been able to perceive that these lines are separable in any of our photographs. Many of the higher lines of this metal are easily reversed, indeed are almost always reversed in our photographs.

TIN lines.

Approximate wave-length.	Remarks.	Approximate wave-length.	Remarks.
3326·0 3260·0 3175·0 3141·7 3033·0 3008·5 2986·4 13·1 2862·8 2839·5 2812·5 2787·5 2784·7 2779·5 2761·5 2660·7 2636·5 2593·5 2571·0 2557·5 2546·1 2530·7	Given by Cornu.	2523·5 2495·5 2493·5 2483·1 2429·5 2441·5 24407·9 2392·5 2364·7 2357·7 2354·5 2334·3 2317·0 2286·9 2282·5 2275·4 2251·0 2245·8 2231·3 2210·7 2198·7 2194·1	Strong, reversed.

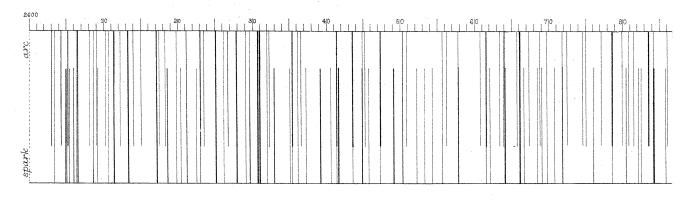
ANTIMONY lines.

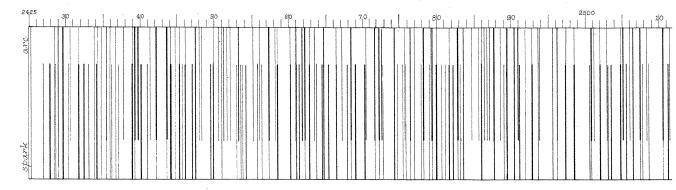
Approximate wave-length.	Remarks.	Approximate wave-length.	Remarks.
4032·0 3637·0 3265·0 3230·8 3228·0 3028·0 2876·5	Close above a lead line.	2597·5 2528·0 2426·0 2383·3 2313·0 2310·0	Very strong, reversed.

TD	7.	
Bismuth	lines	
DISMUTH	111168	

Approximate wave-length.	Remarks.	Approximate wave-length.	Remarks.
$3595 \cdot 3$ $3510 \cdot 4$ $3396 \cdot 2$ $3066 \cdot 0$ $3023 \cdot 5$ $3000 \cdot 0$ $2996 \cdot 0$ $2937 \cdot 4$ $2897 \cdot 0$ $2862 \cdot 0$ $2810 \cdot 0$	Very strong, often reversed.	2799·0 2780·0 2730·0 2593·0 2524·0 2515·4 2448·0 2435·5 2431·0 2400·8 2277·0	Very strong. Weak, reversed.

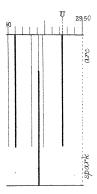
Carbon.

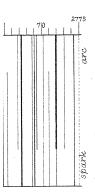

In our map we give the carbon lines as developed in the arc. These occur in the arc taken between poles of purified graphite in air, and in nitrogen, and in carbonic acid gas, and they are always present in the arc taken in our crucibles. Most of them are also in the spark spectrum of carbon as described by us (Proc. Roy. Soc., xxxiii., 403), but some of the spark lines are not developed in the arc, and there are two lines in the arc which we did not notice in the spark.

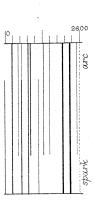

Carbon lines.

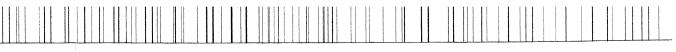
Approximate wave-length.	Remarks.
2881·1 2528·1 2523·9 2518·8 2515·8 2514·1 2506·6 2478·3 2434·8	Not observed in spark. The strongest line. Not observed in spark.

Liveing & Dewar.

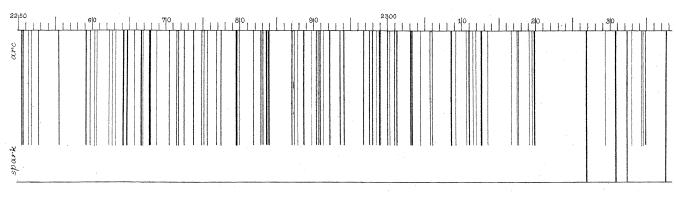

2775	910	2800	1 0 2 0	30 440	2850
arc					
10 Cod (10 Cod					
spark					





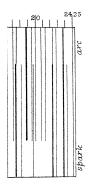

				70		3	90		S	0		25	900		110			2			3			410	
																			and the second						
Antonia and programme and prog					2700			1 O			20			300		44				50			60		Description of the control of the co
			,													• .									
				20					4			5			0			0			80	0		9 0	

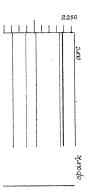
. Plate 1.

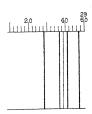


West Newman & (

t Newman & C? sc.

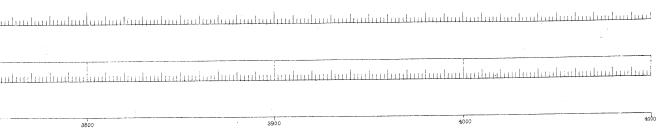



AAATITITITITITI	2.	100	10 20	30	40	5 0	60


22 50			0.0		23															2	24												_			2	25														2
.50	60	1	80	!	0,0		1	20		ŧ	4	3	. 1	6	U	1	8	μ	- 1	(0,0	- 1		20	- 1		40	f		6,0		1	8	0	1	(٥,	1	2	20	- 1		40	1	6	0	. 1	8,0		1	e
Ш	Щ	ШШ	Ш	Щ	Щ	Ш		Ш	Ш	ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	111	111	H	111	111	111	Ш	111	1.11		iШ	111	111	III.	Ш	Ш	Ш	Ш		Ш	Ш	Ш	L
												WEST-AND TO THE PARTY OF THE PA									TO THE OWNER OWNER OF THE OWNER O						ACCORDING TO THE TRANSPORT OF THE PROPERTY OF																								

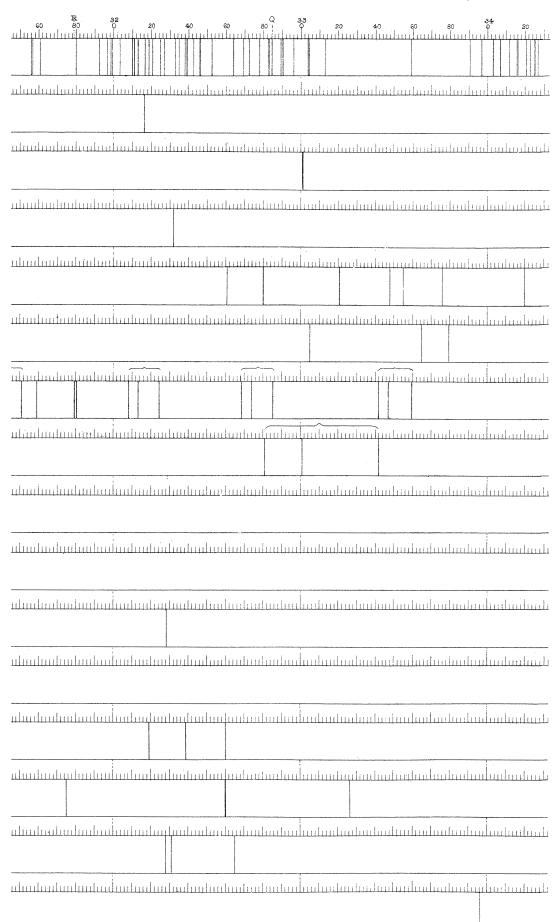
	4	0			50			60									0				9	0 1		Control of the Contro		400			100					20	
			7.7	0		80				alc.	0			820	00	11.			10					201	11			3 0			1 1 4	40			
	26 00		20		\$4	 	80		20	70		20	and the second s	Quant	——————————————————————————————————————	60		8	0	And the state of t	280	The state of the s	2¢	Trust	4.1111		(lill	GP III	80	ulu	29		20		

late 2.

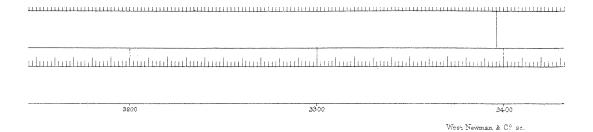


Liveing & Dewar. K <u>հումավայիակորի գիտիա Հայիստիում արևակակայի ախանականում ավարիականի անականում արևակայի ականակայի անակային անակա</u> Nα <u>հումում այնում այնում անավագնում ամասկակավ ավարանական անական ակավարկական անավարկան անականական անակա</u> Li <u>հումումումումումումումումը մեր մեր միումումի անավարի անականումում ումումումում ումումում ումումիումում անական</u> Ba Sr Ca Zn Hg Aυ <u>հայնականական գնակավագնանում ավարհակակավառի անույկում անականական անականում անականական անականական ա</u> Tl<u>համավավավայի միջ ժումը փուրսիանավարիանականական անականի հարկանականի հայականի հայասիանականի անականի անականի անա</u> AlPbSn <u>հուհամասերդեր վասիավագիտերգիր փափափափափակավարի գիտերվաների անականականական անականում ավարհամասիա</u> Sb <u>հահավայիցվութից հավավավայիցի անգինիանուն ավայի անգիտիանականի անականականուն անականին իրականական անա</u>

Bi

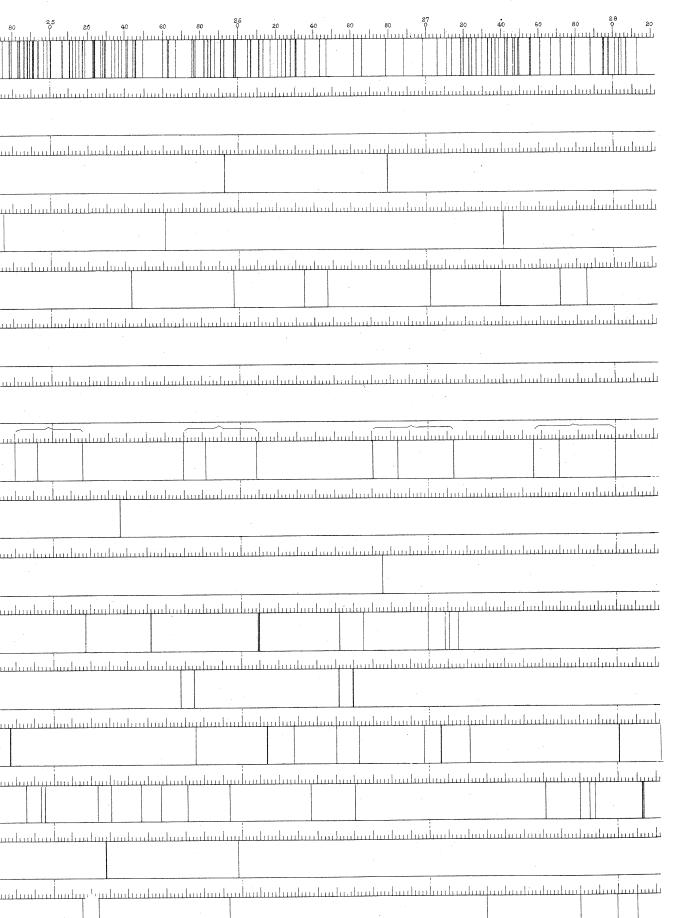

38 I. 60 80 Φ 20 40 60 60 80 Φ 20 40 60 60

tooleolo			10,,11,000		ليتناسانسانس		<u>milantednatudaa</u>
Bi				-			
	ududududu						naluulaninulaaluu
C.							
	,	500		3600		3700	

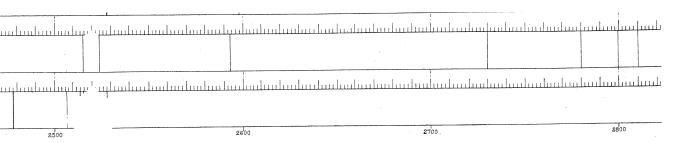


West Newman & C° sc. .

Liverng & Dewar.
K.
Na Na
tantantantantantantantantantantantantant
badanlan kain da
Laulumbankankankankankankankankankankankankanka
Ludandandandandandandandandandandandandand
tantantantantantantantantantantantantant
$H_{\mathcal{G}}$
landuulnahuduulnahuduulnahuduulnahuduulnahuduulnahuduulnilanduulnilanduulnahuduulnahuduulnahuduulna Au
$\int T t$
Landardardardardardardardardardardardardard
Sn Sn
St
kadaalaalaalaalaalaalaalaalaalaalaalaalaa



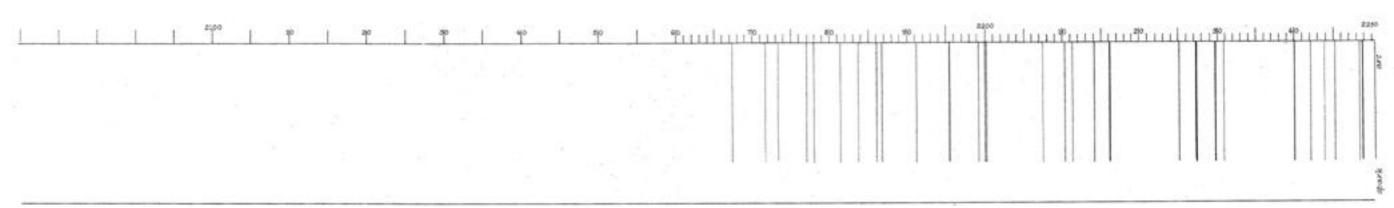
Bi	***************************************		
		duuluuluuluuluuluuluuluuluuluuluuluuluul	
C	2900	30°C0	aloo



Liveing & Dewar Fe K ակավայիակավարիությունակումումումումումիակավարիությունականությունակումումիականությունակումումիականությունակում Να Li <u>հումորվորվոր համարկանում անումում անումոր համարի անումոր հայիականում անումոր հայիականում անումում անում</u> Bα Sr Ca Zn <u>կումայի ավագիտիայի ակավայի անակայի անակավում ավագիտիայի ականական անակայի անական անականական անակա</u>նակա HgAuևու իչ գերակային անումիա հայկային անակային անումիա հայկային վարակային հայկային հայկային անումիա հայկային հայկա TlAlPbSn <u>հումուցիականականումումիականումումիականումիականումումիականումիականումիականումիականումիականումիականումիա</u> Sb <u> Առանոսվում և ավատվարվում կանայի այկային ավատվարկային ավատվարվում և ավատվայի ավարկային վատվարկայի</u>ն

Βi

toutodon localization de la colonida del colonida del colonida de la colonida del colonida del colonida de la colonida de la colonida de la colonida de la colonida del coloni		علىمالممالميل	سلسا
Bi			
			سلسل
C			
2200	2300	2400	


West Newman & C? sc.

1775 2900 11111191111111111111111111111111111		je.
ST.		S
		×
Year and the second sec		de

Maria Latin Wi	والمسائية والمسالية	mlantunlantunlan	dunted in Paulin Printe	1. *
200				gune
span				land o

2421 30	ului fuului f	 andoration lanction la	**************************************	antontination to the transfer the	
97.0					100
grange					

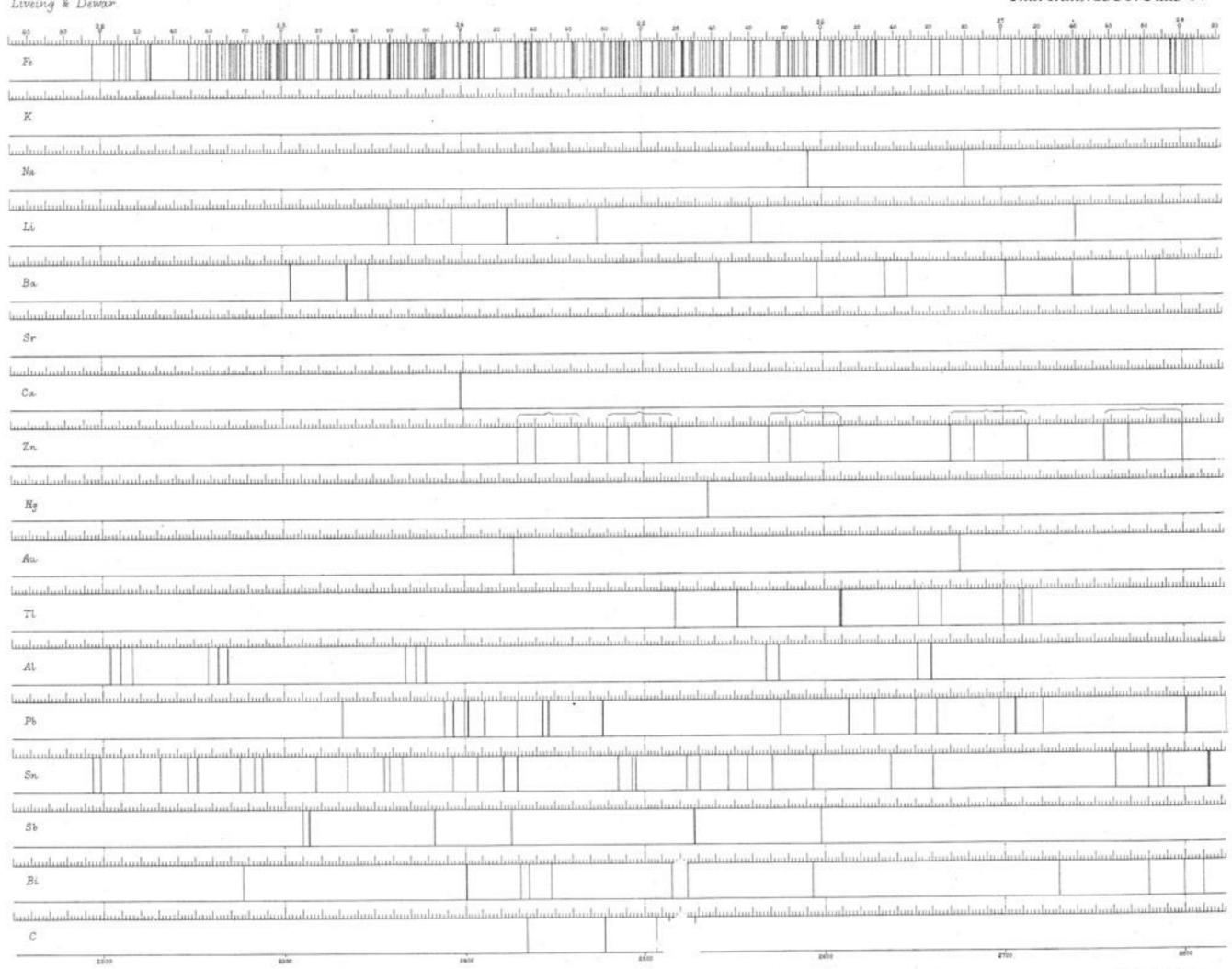
278	
The state of the s	

		5 cs Luni

Zn նահականականական իրկանական անական անական

Au երես հանակակականում այլակականում անականական անական անական անական անական անական անական անական անական անական անա TL

Hg


Ab

РЬ

Sb Bu

C 2900 8308

4500

